
AAD-M 125 872 
CODING FOR F REQUENCY-HOPPED 

SPRE AD-SPECTRUM CH RNNEL9 I/ f
ITH PARTIAL-BAND INTERFERENCE(U) ILLINOIS UNIV AT

URBANA COORDINATED SCIENCE LAO N E STARK JUL 82 R-945
UNCLASSIFIED N88814-79-C-0424 F/G 17/2 NEhhhh1hhhiEhhhhhhhhhhhhE
smhhhhhhhhhhhE
mhhhhhhhhhhhhE



1j.

-..

.1.2

NATIONAL BUREAU OF STANDARDS-1963A



. . . .. . . . . . . . . . . . . . .. . . . r r.

REOT -4 JULY, 1962 UILU-ENG 82-2211

i*l E. E.

MAR 2 1383

Al. CODING FOR FREQUENCY- HOPPED
SPREAD-SPECTRUM CHANNELS WITH
PARTIAL-BAND INTERFERENCE

4'o.

q WAYr. X4

7~)

APROEDPO PBICREEAE.DITIBTIN NLMIE .

-q~
rst



SECURITY CLASSIFICATION OF TNIS PAGE (Man D.O ereteed
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM
1. REPORT NUMIER 2.GOVT ACCESSION O 3. rC IIENT's CATALOG NUMSER

4. TITLE (and S9u1.14 S. TYPE OF REPORT a PERIOD COVERED
CODING FOR FREQUENCY-HOPPED SPREAD-SPECTRUM Technical Report
CHANNELS WITH PARTIAL-BAND INTERFERENCE _ echnicalReport

I. PERFORMING ONG. REPORT NUMBER

R-945; UIWU-ENG 82-2211
7. AJTHOR(&j ). CONTRACT ON GRANT NUMUEN(a)

N00014-79-C-0424

Wayne Eric Stark

S. PERING ORGANIZATION NAME AND ADDRES 10. PROGRAM ELEMENT. PROJECT. TASK

Coordinated Science Laboratory AREA & WORK UNIT NUMBERS

1101 W. Springfield Avenue
University of Illinois at Urbana-Champaign
TTrh.,nn. TT 618()l

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

July 1982
Joint Services Electronics Program 13. NUMBER OF PAGES

135
IS. MCNITORING AGENCY NAME & AOORESS(if different from Controlling Offce) IS. SECURITY CLASS. (f this replort)

UNCLASSIFIED
ISO. CECLASSI FICATION/ DOWNGRADING

SCH ECULE

IS. DISTRIBUTION STATEMENT (.I this Report)

* Approved for public release; distribution unlimited

17. OISTRIUUTION STATEMENT (of the ebstract entered In Block 20. It different om Report)

1S. SUPPL.EMENTARY NOTES

IS. KEY WOROS (Continue on reverae vad if noceem7 and Identity by block nuober)

20. "AESrRAC .Continue an reverse side It necessary and identify by block numoei)

- The performance of codes on frequency-hopped spread-spectrum channels with
partial-band interference is investigated. The asymptotic performance of codes
is measured by the channel capacity and the random coding exponent. The
performance of specific codes is measured by the bit error probability. The
channel models we consider are quite general and include channels with unknown
parameters, channels which change with time, and channels with memory. These
models are applicable to frequency-hopped spread-spectrum communication syse.'s

as well as to several other communication systems.

0D I w ,i 1473 UNCLASSIFIED

SECURII.Y L.ASSIriCAION T1 : .isIIcg d',e, dire T.tepeO)



UNCLASSIFIED
llfdmITY CLASSIFICATION OF THIS PAGOtlhan D, ata Znte

te formulate the problem of comm8nicating over channels with unknown
transition probabilities (i.e. communicating over channels with jamming) as a
game theory problem with payoff function being the mutual information between
the channel input and the channel output. Under certain restrictions it is
shown that memoryless coding and jamming strategies are simultaneously optimal

strategies. Next we develop simple, yet accurate, models for many channels 4ith
memory that arise in practice. The channel statistics are constant for blocks
of symbols of fixed length. The receiver is said to have side information if
it can determine the channel statistics for each block of symbols transmitted.
We determine the capacity, cutoff rate, and random coding exponent for these
channels. The capacity without side information is an increasing function of
the memory length while the cutoff rate is a decreasing function of the memory
length. We show that, for channels with memory and side information random-
error correcting codes with interleaving and burst-error correcting codes have
comparable performance, while for channels without side information random-
error correcting codes with interleaving are inferior to burst-error correcting
codes. As a particular example, we examine the performance of several forms of
modulation and demodulation with partial-band jamming. Our conclusion is that
partial-band jammers can be neutralized provided we use codes with rate less
than a constant that depends on the form of modulation and demodulation.

U S

C.t -'. II .

*- . ,,, ,°

* '. t." .. '

UNCLASSIFIED



CODING FOR FREQUENCY-HOPPED SPREAD-SPECTRUM

CHANNELS WITH PARTIAL-BAND INTERFERENCE

Wayne Eric Stark, Ph.D.
Department of Electrical Engineering

University of Illinois at Urbana-Champaign,1982

ABSTRACT

The performance of codes on frequency-hopped spread-spectrum

Lchannels with partial-band interference is investigated. The asymptotic

performance of codes is measured by the channel capacity and the random

coding exponent. The performance of specific codes is measured by the

bit error probability. The channel models We consider are quite general

and include channels with unknown parameters, channels which change with

time, and channels with memory. These models are applicable to

frequency-hopped spread-spectrum communication systems as well as to

several other communication systems.

We formulate the problem of communicating over channels with

unknown transition probabilities (i.e. communicating over channels with
r

jamming) as a game theory problem with payoff function being the mutual

information between the channel input and the channel output. Under

certain restrictions it is shown that memoryless coding and Jamming

strategies are simultaneously optimal strategies. Next we develop

simple, yet accurate, models for many channels with memory that arise in

practice. The channel statistics are constant for blocks of symbols of

fixed length. The receiver is said to have side information if it can



determine the channel statistics for each block of symbols transmitted.

We determine the capacity, cutoff rate, and random coding exponent for

these channels. The capacity without side information is an increasing

- function of the memory length while the cutoff rate is a decreasing

function of the memory length. We show that, for channels with memory

and side information random-error correcting codes with interleaving and

burst-error correcting codes have comparable performance, while for

- channels without side information random-error correcting codes with

interleaving are inferior to burst-error correcting codes. As a

particular example, we examine the performance of several forms of

modulation and demodulation with partial-band jamming. Our conclusion

is that parti.l-band jammers can be nuetralized provide we use codes

with rate less than a constant that depends of the form of modulation

and demodulation.
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CHAPTER 1

INTRODUCTION

In many communication systems the noise present is not entirely due toI

thermal noise in the receiver. Many communication systems must operate in

the presence of intirference or noise from other sources. For reliable

communication, these systems must be designed to perform acceptably even in

the presence of interference. Often very little information is known about

the particular form of the interference. It could be that the power of the

interfering signal is known or is known to be less than some number but

little other information is given on the structure of the interference. For

such situations the communication system must be robust to the particular form

o f the interference.

In many applications there is the possibility that the communication

system must operate when there is a hostile source of interference (called a

Jammer) which tries to make the performance as unreliable as possible. One way

to combat this type of hostile interference is through the use of spread-

spectrum modulation. If the power of the interference is concentrated in a

certain frequency band then if the transmitter uses more bandwidth than is

necessary for reliable communication in the presence of thermal noise only,

* this interference will have less of an effect on the output of the receiver.

This is due to the fact that the interference now is occupying a smaller

fraction of the frequency band being used by the transmitter-receiver.

There are many forms of spread-spectrum (SS) modulation that can be

presently implemented. One form of SS is direct-sequence [11]. Direct-sequence

spread-spectrum modulation uses signals with a particular structure in order

to minimize the effect of certain types of interference. Another form of
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spread-spectrum is fteguency-hopped spread spectrum 111lE39]. This form of

SS changes its carrier frequency according to a specified hopping pattern and

then reverses this operation at the receiver. Only interference at the same

rnfrequency of the transmitted signal affects the performance of the system. All

other interference is rejected by filters in the frequency dehopper. A third

form of spread-spectrum modulation is chirp SS [11],39]. The idea behind this

form of modulation is to continuously change the instantaneous frequency of the

signal so that interference at a particular frequency affects the output only a

fraction of the time. There are other forms of spread-spectrum modulation.

A combination of two or more of the above modulation forms is also possible and

should be considered as a possible SS modulation. The different forms of

spread-spectrum modulation have different characteristics. One type of SS

modulation might yield reliable communication for one type of interference

whereas another modulation performs poorly for the same interference.

In this thesis we will consider frequency-hopped (FR) spread-spectrum

communications subject to interference that is in only a fraction of the

total spread bandwidth the transmitter is using. There are many systems

that have this type of interference. The prime example of this is a

communication system with a partial-band jammer. This type of jammner con-

centrates all the available power in only a fraction of the spread bandwidth

of the transmitter. Interference in a fraction of the band arises also in

a spread-spectrum multiple-access communication system with different users

using different hopping patterns. Interference occurs when two users hop to

the same frequency at the same time. Yet another situation which gives rise

to partial-band interference is when there is some fading of the transmitted

signal in certain frequency bands. Then with FH SS modulation we have fading
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in certain frequency bands and no fading in other frequency bands. Although

we are considering frequency-hopped spread-spectrum modulation the models

developed are applicable to other forms of mo~dulation with different inter-

K ference. For example if we use direct-sequence modulation and the interference

is a partial-time jamimer (pulsed-jammer) then the models for this ti.' of

modulation and interference are exactly the same as frequency-hoppe 'pread-

spectrum with partial-band jamming.

The effect of partial-band jamming on the average error probab.'

can be easily determined with frequency-hopped spread-spectrum communications.

Consider a jammer that adds noise to the transmitted signal in only a fraction

of the frequency band being used. If the total power of the jammer is held

fixed, then in a fraction of the band,the noise power density is larger than

* if the jaummer was spreading his power over the entire frequency band. As a

result the signal-to-noise ratio in the fraction of the band jammed is

reduced by a factor corresponding to the fraction of the band jammed. Since

there is no jamming noise in the fraction of the band that is not jammed the

signal-to-noise ratio is very large. When the jammer chooses to corrupt the

entire frequency band the error probability is typically an exponentially

decreasing function of the signal-to-noise ratio. When the jammer chooses the

fraction of the band to jam in an optimal way then the probability is an inverse

linear function of the average signal-to-noise ratio. The degradation due to

intelligent jamming is a severe penalty to be paid in terms of performance

(as much as 30-40 dB increase in necessary power for the same error rate).

Methods that can reduce the loss due to intelligent jamming must be considered.



4

For communication systems with intelligent jamming spread-spectrum

alone is insufficient to provide adequate performance. In this thesis

we prove that indeed this loss can be entirely eliminated by suitable coding

techniques combined with spread-spectrum modulation.

There are several key issues that arise when considering coding with

spread-spectrum communications in the presence of partial-band interference.

One key issue is whether or not the decoder knows if the received signal has

been jammed or not. Naturally knowing this side information and using this

in a clever way in the decoder can improve the performance compared to coding

without side information. Another issue which must be addressed is that of

interleaving. The interference in a spread-spectrum communication system may

have memory. In this case there are two options with coding: i-'ter-

leave and use random error correcting codes or use burst correcting codes.

Previous work in coding has mostly been in evaluating the performance of

specific random error correcting codes o n these channels [18], [21], [31],

[41], [441 or in computing the computational cutoff rate for these channels

[2], (4], [8], [42], [43]. All of the papers on coding considered full

interleaving to eliminate the channel memory used random error correcting

4 codes. In [7] the degradation due to partial interleaving with

random error correcting codes was considered. The papers on the channel cutoff

rate have also considered the degradation of partial interleaving when using

random error correcting codes.

In this thesis we consider the performance of channels with partial-band

interference from several viewpoints. In Chapter 2 we start by considering

a game theoretic approach to communication in the presence of interference

which henceforth we shall refer to as jamming. The payoff function is taken



to be the mutual information between the input of the channel and the output

ci of the channel. We show that under certain restrictions on the allowable

strategies the jammer and coder may have, the optimal strategies are to

be memoryless; i.e. memoryless coding and jamming are the optimal strategies

for the coder and jammer. The payoff function is chosen to be the mutual

information for the following reason. It can be shown that codes and a

decoding rule exist such that reliable communication is possible for any

-. allowable strategy of the jammer provided the code rate is less than the

value of the game with mutual information as the payoff function. Although

memoryless jamming is optimal, many situations arise in which the jamming

signal has memory. A model is presented in Chapter 2 which takes into account

the possibility of partial-band jamming and memory. This model is simple

enough to be mathematically tractable and yet gives an accurate description

of the channel behavior. This model highlights the combined effect of channel

memory and side information at the receiver concerning the presence of a

jammer. The basic feature of the model is the block nature of the memory.

This is perhaps the main feature of frequency-hopped spread-spectrum communica-

tion. With FH SS in many cases the interference at different frequencies are

statistically independent so that the channel is in fact a memoryless channel
U

from hop to hop. We conclude that when side information is available

interleaving does not degrade the performance,but without side information

available the channel capacity is decreased with interleaving. Also in Chapter

2 we take a particular example and evaluate the performance of random error

correcting codes and burst error correcting codes on channels with and without

Iside information (with full interleaving for the random error correcting code)

to verify the conclusions obtained from capacity considerations.

S



In Chapters 3 ahd 4 we consider channels with a particular form of

demodulation. Chapter 3 treats the case of coherent demodulation and in

* .Chapter 4 noncoherent demodulation is considered. In both chapters we

consider the channel capacity, cutoff rate and coded error probability of

frequency-hopped spread-spectrum communications in the presence of partial-band

jamming. We consider channels with memory with and without side information

available. From capacity, cutoff rate and coded error probability we conclude

that provided codes with small enough rate are used,the optimal strategy of

the jammer is to jam the entire band so that the loss incurred from intelligent

* jamming is in fact completely ~recovered by coding with small rates. This is

true with and without side information available. Also it is shown that in

many cases there exists an optimal code rate that the coder wishes to use in

order to minimize the energy needed to transmit any symbol reliably. Various

coding schemes are calculated for cases of side information available and

interleaving also.

In Chapter 5 we make some comparisons between various coding strategies

and draw some conclusions concerning coding for channels with partial-band

interference.
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CHAPTER 2

INFORMATION THEORETIC MODELS

2.1 Introduction

In this chapter we take an information theoretic viewpoint of

p frequency-hopped spread-spectrum channels.* The models we consider are

general enough to include several forms of interference including partial-

* band jamming, nonselective fading, and multiple access interference. The

basic feature of frequency-hopped spread-spectrum communication is the

ability of the transmitter to change the frequency of the signal transmitted.

L The assumption we make in describing the models is that when the frequency

changes the interference at the new frequency is independent of the inter-

[ ference at all previous frequencies. The channel accepts symbols from an

input alphabet A and produces symbols in an output alphabet B. The input

symbols are partitioned into blocks of length n. Each block of n symbols

is transmitted at a particular frequency chosen according to a hopping

pattern. Since the interference at a particular frequency is independent

of the interference at other frequencies two symbols in different blocks

are affected by the interference independently. This is not necessarily

true for two symbols in the same block of n symbols. Because of this the

channel is not memoryless. Consider now the new channel with input alphabet

An and output alphabet Bn. The new channel has, as input symbols a single

block of n symbols from the alphabet A. The output symbols are blocks of

n symbols from the output alphabet B. Since two blocks of n symbols are

transmitted at different frequencies and are affected independently, the new

channel is a memoryless channel. We make the following definition for any

channel. We say a channel is block n memorvless if the new channel which has
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as symbols blocks of n symbols from the original channel is a meoryless

channel. Block 1 memoryless is memoryless in the usual sense [27]. It is

important to point out that the transmitter knows which n symbols constitute

a block and are transmitted at a particular frequency since this will be

crucial in the analysis to follow. Thus frequency hopping with n bits per

hop and interference which is independent at different frequencies forms a

block n memoryless channel.

In this chapter we consider block n memoryless channels from an

information theoretic viewpoint. In Section 2.2 we consider a game theory

formulation for block n memoryless channels and determine the worst block

n memoryless channel and the optimal coding strategy. The game theory

approach uses the mutual information between the channel input and output

as the payoff function. This is justified in Section 2.3 where we state

coding theorems to show existence of codes with rates less than the value

of the game and with arbitrarily small error probability. In Section 2.4

we consider a particular type of block n memoryless channels. These channels

are block-I memoryless when conditioned on an external random variable that

typically describes the level of noise in a particular block. Capacity,

cutoff rate, and the reliability function are determined for these channels.

Channels with both memory and jamming are considered in Section 2.5. Finally,

in Section 2.6 we consider the performance of specific codes on channels

with memory. We consider Reed-Solomon codes which have code smbols as blocks

of n symbols. The performance of convolutional codes with interleaving is also

determined. We compute the performance of these codes on channel with and

without side information at the decoder and conclusions are drawn that

coincide with conclusions from capacity considerations.
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2.2 Game Theory Formulation

The comunication channel we consider has input alphabet A and output

alphabet B. Player I called the coder, wishes to conmunicate information

through the channel reliably with largest possible rate. Player 11, called

the janier, wants to minimize the rate at which information can be trans-

mitted through the channel. The channel is described by specifying two

random variables, X and Y. The random variable X is the input to the channel
4M

from the coder and the random variable Y is the output of the channel. The

coder's strategies are distributions Fx on the random variable X while the

jammer's strategies are the distributions Gy(yja) on the output of the

channel when X = a is the input. The jammer thus chooses the conditional

probabilities of the output given the input while the coder chooses the

£distribution of the input. We restrict the set of distributions the players

can have as follows. The allowable distributions (strategies) for the coder

are given by a set S. The collection [Gy(yla):a E A], which we denote by

A , is required to be in a set T of allowable channels. The payoff function

O(Fx,Jy) for this game is taken to be the mutual information I(X;Y) between

the input to the channel X and the output of the channel Y. The objective

of player I is to choose Fx E S to make O(Fx,Avy) as large as possible.

Player II chooses A5 E T to minimize O(Fx, Jy). Thus associated with the

game are two programs:

Program I (Coder's Program)

C' = sup inf O(Fx,.Iy)
Fx ES y E T



10

Program I (Jamier's Program)

C"- inf sup 0(FX,,y)
AyE T FXE S
Y

A strategy FX E S such that inff0(FxAry) :Ab E T] C C' is called an

optimal strategy for the coder. Similarly if supE0(FX,Jy) : Fx E S) C"
*'X

then .. is called an optimal strategy for the jammer.
-..

It is clear from the above programs that C' 5 C" and it is easy to give

examples where C' < C". However, since 0 is concave in Fx and convex in .

([27], Theorems 1.6 and 1.7) if S and T are compact convex sets then

C' C" [ 38]. This equality is equivalent to the existence of a saddle point

i.e. a pair of strategies FX E S, .y E T such that

0(Fx,.k ) _5 0(Fx,.y) : 0(Fx,.b ) Y Fx E , - E T . (2.1)

If (2.1) holds then F and it, are optimal strategies for the coder andx Y
jammer respectively. This game theory, formulation was considered by

Dobrushin [12] and Blachman [ 3.

We generalize this game theory formulation by allowing the players to

adopt n-dimensional strategies (i.e., non-memoryless strategies). We extend

the definition of admissible strategies to higher dimensions by using the

notion of the mixture of a set of distribution functions. Let the n

dimensional distribution F (n) (x), X = (Xl ,.. .,xn) , x = (xlx 2,...,xn) have

A X ~(n) n2 "
marginal distribution Fx (x) = Fx (-,m,...,,x,-,...,-) with the i-th

component being x. We say F(n) E S(n) if the uniform mixture of the
m

marginals is in S:

n
(n S (n) if (x) E S (2.2)
X n zx~xE
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The admissible strategies for the jammer are defined similarly. We say

yn G 4~(i ): a E An] E T where G (ya is the nc dimensional

conditional distribution of the output of the channel given the input

X I a, if the uniform mixture of the conditional marginals Gyi (yla) is in T:

A()E Tn if 45 E *T (2.3)

in
where 3- EG, n(.I) Z G (ylai) E T, a E An] is the collection of

- - i-1 i
conditional distributions with uniform mixture of the marginals G (yla) in T.

Yi
We note here that we have restricted the strategies to those with no

"intersymbol interference"; i.e. previous inputs are not allowed to affect

current outputs. For these generalized strategies we have the following

programs:

Program In

su inn. (F n ..C ) ., n)
C n = F(n)ES(n) j1 (n) in ) 0FY

Program IIn
CIO in (n) ,,(n))
Sc"inf Fn(n)S(n) .. supn n) E T F (n) E S (n) -- --

where the payoff function is now O(F(n) (n)) = n(X;Y). We have the
X IY n

following result concerning C' and C".n n

Theorem 1: C' = C' and C" = C" for all n Z I.
n n

Proof: First we prove C' = C'. Let F be an admissible strategy i.e.n X

F E S and let b( n ) E T(n ) be an admissible strategy for theX y
jammer. Then if X = (XI,X2 ,...,Xn ) is a random vector consisting

of n independent identically distributed (i.i.d.) copies of X we have
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0 k(Fx sY ) ([271, Theorem 1.8)

1 0 (FX oky) ((271, Theorem 1.7)

whereky is the collection of uniform mixtures of the conditional distributions

G . Since .y E T(n ) we have
Yi. y t (n) j,(n)

, n)f(n) X Y t

sup (ninfT(n)o ( - Fx) .k (n sup Ln T(

so that C' k C'. Now let F(n) E S(n) and Gy(yIa) be arbitrary. Then ifn X

G(n) is the n-dimensional distribution of I - (YI,...,Y ) given X - ay n
with Yi conditionally independent then

(n) (n) n
(Fx' _) - n ilF ,5y) ((27], Theorem 1.9)

:5 0 (FxJ') ([27], Theorem 1.6)

(n) n
O where F is the uniform mixture of F ') i.e. F X(x) E F x).

Since FX E S we have

,(if F()4(n) ): inf 0(Xj
•__y

Y~ ~ ~~~Fn n)ET(nn)YAY

sup inf 0(F(n) 3 1(n)) < sup inf (F,.y
F (n) E S(n) (n) E T(n) X - F E S Jy E T Y

so that C' S C'. Thus C' = C' as asserted. Similarly C" - C".n n n
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What wi have shown Ls that of all block n memoryless channels, the

j channel with minLmum mutual information is the block I memoryless channel.

The conclusions one can draw from this are that memoryless jamming is

optimal (G (n)*ylx) - II G (yilxi)) and memoryless coding is optimal
i-I

(PF()*) - t(F (Y). Thus, of all types of interference, the one that

minimizes the mutual information is independent from symbol to symbol.

As an example let A - B - [,l,...,M-l] and let T be the set of channels

with'error probability per symbol less than C, 0< c:5 1 and S be all

distributions on A. Then a result of Dobrushin [121 is that

log M + (l-C)log(l-C)+ClogC -clog(M-l), C i5 -1

C-C' (2.4)

M

Here C' and C" are measured in bits per channel use and all logarithms havei*
base 2. The optimal distribution Fx(x) is the uniform distribution

on [0,1,...,M-13 and the optimal channel G (ylx) satisfies

€/(M-1), y # x, 6- 1 - M
G (ylx) = 1 - C , y C< x, 6 -1 (2.5)

P C 1 IJM

Here we generalize this game to the n dimensional case and apply the theorem.

For the generalized strategies we use the channel n times to transmit n
Ssymbols. Let C i be the error probability of the i-th channel. ThenT(n

(n)

is the set of channels with n . : C. Also S is the set of

Lm
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distributions on An . By the Theorem 1 C' C' and C" C' and is given in
(2.4). The optimal strategies are memoryless with marginals Fx ) and Gy(yIx )

given above. A conclusion one can draw is that if the average error

probability is less than e then with memoryless encoding I(;y) > C' - C"

with equality for the optimal strategy given above.

As a second example consider A - B - I, the real line. Let

S (Fx): j' x2 dFx(x) -- E) (2.6)X R
and

T = (Gy(ylx): f (y-x) 2 dGy(yIx) - N,xE A]. (2.7)

y EX

The set of channels is restricted to channels whose added noise has mean

square less than or equal to N. For S and T given in (2.6) and (2.7) a

result of Dobrushin (121 and Blachman 1 31 shows that

C' = C" , log(1 + E (2.8)

with F*(x) = (x//E) and G*(yjx) = -X where Oju) is given by

xu 2/2
=(u) j e dx . (2.9)

Again we generalize this game to allow for n dimensional distributions.

The set S (n) and T(n) are given by

s(n) = Fn)(x): nI xx' dF(n)(x) < E]

where ca' denotes the transpose of the vector a. Similarly
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T(n) - (n)(YIx): y jV(Z-M)(y-x)d(n)(y 2) N, I E An

"-" By Theorem 1 C' - C" - C' C" and the optimal distributions are memoryless
n n

with marginal distributions being Gaussian.

2.3 Information Theoretic Interpretation

In this section we give an information theoretic interpretation to the

results of the previous sections. We consider the existence of codes which

achieve reliable communication for all strategies the jammer or nature can

present to the coder. Here we state the results that apply from the

literature to our particular problem. First we clarify the model we are

considering. Then some definitions are necessary in order to state the

results.

UFirst we are going to consider only memoryless channels since block n

memoryless channels are memoryless channels with larger alphabet sizes.

There are essentially two different methods a jammer might choose a channel

if from the restricted set T in order to minimize the performance. One way,

which results in a channel called the compound channel [46], is for the

jammer to choose a channel from T and force the coder to use this

* channel for every symbol transmitted in a codeword. The other way is for

the jammer to choose an element in T for each symbol transmitted. The

channel then might change from symbol to symbol of a codeword. This is

called an arbitrarily varying channel (AVC) [461. Below we state some results

on the existence of codes for these channels. A code (n,M,) is defined as

a set £(Ul,Bl),(u2 ,B2 ),...,(uM,BM)] where u. i 1,2,...,M is a length n

'4' 1
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sequence of symbols, with each symbol in A and Bi, i = 1,2,...,M are disjoint

sets of length n sequences with elements in B (Bi C Bn, i 1,2,...,M) such

* that

P.(B ilui ) ._ for i-l,2,...,M and all JE T (2:10)

where u, M (UiUi2,... .,u) and
n

P,(Bclui) - E nI Gj (y 3 lu13 ). (2.11)

The rate R of an (n,MX) code is R - log M/n. The coding theorem and its

converse for compound channels with A and B finite are as follows.

Theorem 2 (Wolfowitz [46]); Let 0 < X - 1 be arbitrary. Then there exists

a positive constant K independent of - such that, for any n, there exists a

(n,M,X) code for T with rate R satisfying

R > C' K
0

Theorem 3 (Wolfowitz (461): Let 0 < X- 1 be arbitrary. Then there exists a

positive constant K' independent of J such that, for any n, there does not
0

exist a (n,M,X) code for T with rate R satisfying

The above theorems do not assume the sender (transmitter) or receiver

know which channel the jammer has selected for the codeword. If the sender

knows which channel the jammer has selected then the above theorems are valid

with C' replaced by C". If the receiver knows which channel the jammer has

selected then the theorems are valid as stated.

The above theorems are stated for the case of finite alphab-s.

When just the output alphabet is infinite and the input alphabet is tinite

Theorems 2 and 3 are no longer valid (see [17). For the case of infinite

* output alphabet Theorem 2 is valid if we replace C' by C' where
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C' - sup sup inf I(X,[Ylp) (2.12)
Fx ES P Ay

P is a partition of the output alphabet, and (Y]p is the quantization of Y

by P (see [271 p. 34). If however, the receiver knows which channel the

jamer selected then Theorems 2 and 3 are valid as stated. The above results

for the semicontinuous case were proved by Kesten (171. Note that in the

semicontinuous case C' : C' so that C' is an upper bound on C'. In the

sequel we will consider C' as the performance measure of the channel, since

it is easier to compute than C'.

Consider now the second method the jammer might use to choose the

channel for use by the coder. If the jammer chooses an element of T for

each symbol of a codeword transmitted then we have an arbitrary varying

channel. The coding theorems for this case are far less complete than for

the compound channel. If the output alphabet B consists cf only two letters

then Theorems 2 and 3 are valid for the AVC (46] Section 6.4). For larger

output alphabets,see (101 for related results.

2.4 Channels with Memory

In this section we introduce a class of block m memoryless channels that

are not block 1 memoryless. These channels are of interest because they model

frequency-hopped spread-spectrum channels. After describing the channel

models, we derive expressions for the capacity, cutoff rate, and reliability

function for these channels.

Let (as1, s E n denote a collection of memoryless channels, each with

input alphabet A and output alphabet B. The index parameter s lies in a

set : on which a probability distribution P is defined. Let SI,S 2 .... be a

sequence of independent identically distributed. valued random variables,
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the common distribution being P. For each integer m 2 1 we define the

channels A(m) and 'E(m) with input alphabet A as follows. When a sequence

of letters x0 ,x1 , ... from A is transmitted, the k-th block of m consecutive

letters, x (kl)m, x(k-l)m+l... , -k]- is in fact transmitted over one of

the component channels As; the random variable S k determining which component

channel is used. If the receiver gets no direct information concerning which

channel was used for the transmission of the k-th block then we call this

the channel A(m) without side information. If with each noisy block of m

symbols the receiver knows the index s of the component channel being used

to transmit that block then we call this the channel T(m) with side information.

We assume the transmitter can synchronize to the channel in the sense that the

transmitter knows which are the first and last letters in the k-th block of m

letters. One further assumption is that the receiver knows both the distribu-

tion P and the transition probabilities of the component channels. This last

assumption will be relaxed slightly in the next section.

LSince the channel with (without) side information can be considered

as a memoryless channel with input alphabet Am and output alphabet Bm X C (Bm),

the capacity is found by maximizing the mutual information of the memoryless

0 channel over all input distributions. For the channel without side informa-

tion we maximize the mutual information I(X;Y) between the vectors

X = (Xl,X2 ,...Xm) and Y = (Y1,Y2 ,...,Ym) where

I(X;Y) = E {og 2 1Y (2.13)
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n

[| p xX) - E cps (Y.] = EI ps(Yi xi)] (2.14)

and ps(, ,) is the transition probability for the component channel A. The

expectation in (2.13) is with respect to the random vectors X and Y and the

expectation in (2.14) is with respect to the random variable S with distribu-

tion P. Also in (2.13) p(y) is the unconditional distribution on the channel

output Y. For the channel with side information the output now consists of

I-s Y and S. The mutual information (I(X;Y,S) is given by

'(X;Y,s) - E los2 P (2.15)

where p S(y) is the distribution of the output conditioned only on the

random variable S.

The capacity C(m) for the channel without side information measured on

a per channel use basis is just

C(m) max (m I(X;Y)] (2.16)
X

For the channel with side information the capacity T(m) is given by

T(m) max [I I(X;Y,S)3 . (2.17)
X

In (2.16) and (2.17) the maximization is over all distributions on the

random vector X. If the input distribution that achieves capacity

(maximizes mutual information) for each component channel are identical,

then E(m) is in fact independent of m (- = C(m)) and is just the average

of the capacities of the component channels [291:
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E ECS) (2.18)

where C is the capacity of component channel As . Furthermore it can be

shown that [291

C(m) - , (2.19)

and if A and B are finite then

lim C(m) f C . (2.20)

As an example let Q = [0,1] and (As] be the set of binary symmetric

channels with crossover probability s. For this example A = B f 0,1].

Let d(x,y) denote the Hamming distance between the vectors x = (x1,x 2 ,...,xm)

and y = (y1,Y2 ,...,y). The transition probabilities in (2.14) then are

easily shown to be

Is k(I-S) m- k ), . (2.21

m,k _ P(Vlx) = ES (, d(x,x) = k, k = 1,2,...,m . (2.21)

The mutual information for the channel A(m) without side information,

is maximized by letting X have the uniform distribution

(i.e. PCX= 0) = PCX ) with [X1 ] =I independent and identically

distributed. The capacity C(m) is thus given by (see Appendix A)

0 1 1
C(m) = m ax! (X;Y)] = , + ! (k).,k log2lmk (2.22)

X m k=0 k

6
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[;1

The factor of m" I in (2.17) is due to the fact that we are measuring

the capacity in bits per channel use. The mutual information for the channel

A(m) with side information is maximized by the same distribution and the

capacity E(m) is given by

C(m) - max - I(X;Ys)] = E[i - H2 (S)] (2.23)
X m 

2(S-

where

H2 (s) = -slog2s - (l-s)log2 (l-s) . (2.24)

We now consider the random coding exponent E r(R) for these channels.

In order to be consistent with well established notations we change slightly

our notation. Let Q(x) be the distribution on the input X to the channel

and p(yx) the distribution on the output vector v given the input vector x

as before. The random coding exponent E (R) is defined as
r

Er (R) = max max[E 0(PQ) -PR] (2.25)
o<_ !5 1 Q

where

Eo(PQ) = -log 2  E I Q(x)p(y x) i(l+)]l+ . (2.26)
y E B xEA

This function is of interest because of the following result of Gallager:

Theorem 4 (Gallager [131): There exists on (n,M,X) code with error probability

& defined in (2.10) satisfying

-n E r(R)

where R = o2/n. Furthermore -r(R ) is a convex, decreasing, positivelXg4M2 rr(.7

function of R for 0 : R < C, where C is the capacity of the channel.

wher R lo 2 ~4n. Frthrmoe E (R)is covex deceasngpostiv
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For block m memoryless channels (2.25) and (2.26) are valid if x and y are

replaced by x and yA and B by Am and B2,and E (p,Q) is normalized by the
0

* factor 1/m. Of special interest is the cutoff rate which is defined as

R0  maxE (lQ)

which many believe is the largest rate at which practical coding systems can

be implemented. The cutoff rate for the channels considered here can be computed

as follows. Let R denote the cutoff rate for component channel As; Ro(m)L O,S

the cutoff rate for the channel A(m) and R (m) the cutoff rate for the
0

channel E(m). We can express R (m) in terms of R as 29
0 0,s

Slog2 E[2 R0 5 ER0, (2.28)

The cutoff rate without side information is, in general, less than the

cutoff rate with side information:

R0 (m) : R0 (m)

From (2.18) we see that the capacity with side information is independent of m.

However, the cutoff rate with side information depends on m and,in all

6 cases considered, decreases as m increases (29], [43]. The cutoff rate with-

out side information is also a decreasing function of m for all cases

considered. This is contrary to the increase in capacity with increasing

0 memory length. The limiting value of R0 (m) as m becomes large is given by (291

lim RO(W) = ess. inf(ps

..0s

which for the case of finite number of channels with each having positive

probability is given by

lira R0 (m) m rin
M ,s.Z

Il
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The function E (p,Q) for the channels of the previous example can be
0

calculated. We consider only those channels which are symmetric enough so

that the maximizing Q) in (2.25), denoted by Q*Qx), is a constant

independent of x. Using Q*(x) - 2 and pQlx) given in (2.21) we obtain

E0 (p,Q*) for the channel without side information as (see Appendix A)

M1Ep+Q")mnp '1'0'a 1 P l (2.29)
E E(P,Q*) = p - " P 10g2' E(k m) 'm,kP(,9

0 k, -0

with a m,k given in (2.21). For the channel with side information we obtain

E(pQ*)= P- lg 2 E, () i (1 5 ) (2.30)
in k=O

where the expectation is with respect to the random variable S with

distribution P.

The cutoff rate R for any discrete memoryless channel is found by
0

maximizing the function Eo(1,Q) over all input distributions Q. For the

channel without side information the cutoff rate R ° (assuming Q*(x) = 2- m)

is given by (see Appendix A)

R= 1-lo i (2,31)0 mZ192 E ) m, k

For the channel with side information the cutoff rate R is given by
0

R Zlo ( (2.32)
0 0 A kL=0
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The cutoff rate is the intercept of the random coding exponent E r(R)

with the R - 0 axis and is the largest linear error exponent. Over a

range of rates Rcr _ R < C, with Rcr a constant, the exponent in the bound

is the largest possible. Over this range of rates the random coding exponent

is equal to the reliability function defined in Gallager ([13], Eq. 5.8.8).

Let us now consider v specific example of these channels. Let ]
S= 0,hl, Pts - O] - Il-c, P[s - - g and A - B - (O,1). Let A0 be

a noiseless channel and £ be a useless channel (error probability ).

Then cm,k for the channel without side information is given by

1
c 2"m , k = 0

m, k 2 = (2.33)
S2 m k = l,2,..,m " *

Using (2.31) in (2.28) and then (2.28) in (2.25) yields the random coding

exponent for this channel. This is plotted in Figure 2.1 for various values

of m.

The value of R in Figure 2.1 such that E (R) = 0 is the capacity C of
r

the channel and the R = 0 axis intercept is the cutoff rate R0 . Note that

as m increases the capacity increases so that for rates sufficiently large

channels with larger memory have larger random coding exponents. However,

for smaller rates this is no longer true and channels with smaller memory

may have larger coding exponents.

Consider now the channel with side information. The random coding

exponent E (p,Q*) may be calculated as0

0E - log 2 [l . .: + r] (2.34)
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This is used in (2.25) to determine the random coding exponent and is

plotted in Figure 2.2. Note that the horizontal intercept (the capacity)

is independent of m and that at all rates less than capacity, the random

coding exponent is larger for channels with smaller memory.

2.5 Channels with Memory and Jamming

In this section we combine the models of channels with memory of the

* previous section with the models of channels with jamming of Section 2.1

and 2.2 to model frequency hopped channels with non memoryless jamming.

The channels with memory of Section 2.3 implicitly assume the receiver knows

4 the distribution P on the component channels and the transition probabilities

of each component channel. In this section we consider the case of the

jammer choosing both the distribution P and the component channels for some

set of allowable distributions and allowable component channels.

Consider a class T of channels with memory. Each channel in the class

has the structure of the channels of the previous section being block m

Wmemoryless but not block I memoryless. The jammer chooses from the set T

a channel for the encoder and decoder to communicate through. Assume that

the janmer chooses the channel for each codeword so that we are considering

the compound channel model. Then, since we are assuming block memoryless

channels, the capacity C' is the same as given in Program I of Section 2.1

with O(Fxjv) given by 1 I(X;Y) for the channel without side information
x 1

and - I(X;Y,S) for the channel with side information. The fact that C'm

is the capacity is justified by Theorems 2 and 3 for the case of A, B, 2

finite. If B or 2 is infinite then C' is the capacity provided the

receiver knows which channel in T the jar:mer selected.

S
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As an example consider the case A - B - [0,1] andCG - (0,1]. Let

P(S Q 0] - €, O] - 1-., A0 be a noiseless binary channel and a

a binary symetric channel with crossover probability of f(e) for some

decreasing function f. Then for each s E [0,1] we have a different channel.

The jamner chooses c and thus the channel for communication.

The capacity C' of this channel when no side information is available

is given by

Ce m in (-I(;) min C1 + I m ()CI lg~~ (2.35)
0 1 m 0 £ 1 k0 m, m,

* where

{1 -+( m k =0

a m,k (2.36)

c fk(6)(l-f(e)) k = ,2,...,m

When side information is available then the capacity C' is given by

C1 = min ((1-e) + (l-H2 (f()))] (2.37)

We will see in Chapters 3 and 4 that this example is directly applicable

to frequency-hopped channels with partial band jamming.
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2.6 Performance of Codes on Channels with Memory

Up till now we have only considered asymptotic measures of the channel's

ability to convey information. Here we compute the performance of specific

codes on a particular channel with memory. We defer the performance of

codes on channels with Jamming and memory until later. The channel model

we consider'is that of Section 2.3 with 0 - [0, ], P[S-O] - 1 - c,

PES-k] - c, A - B - O,J1. Let A0 be a noiseless binary channel and A a

- binary symmetric channel (BSC) with error probability . For this channel

we consider Reed-Solomon (RS) codes and convolutional codes with interleaving.

We also consider the cases of side information available and not available.

First consider the case of side information available so that the

decoder knows which channel each block of m bits was transmitted over. Since

the error probability is k on channel A the decoder can erase all bits ini
every block of m bits transmitted over A For R-S codes we treat a block of

m bits as one symbol (in GF(2 m)) of the code. The probability of a received

symbol being erased is just e. For R-S codes the probability of a decoded

symbol being in error P for a bounded distance decoder can be computed
es

as [1]

n--- (i n j) - 0) n -j  (2.38)

e,s j=n-k+l n j

If there are more than n-k erasures the R-S code is unable to recover the

erased symbols. If the decoder is unable to recover the erased positions the

decoder gueses the erased symbols. The bit error probability Pe,b is

given by

Pe,b P (2.39)

e 4
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We have plotted in Figure 2.3 the bit error probability for two different

V R-S codes of rate approximately k. The first is the (255,127) R-S code with

8symbols in GF(28). We consider using this code on A(8) (i.e. m f 8). The

other R-S code is the (31,15) code with rate approximately . This code

is used on the channel E(5) and has symbols in GF(2 5). (We have plotted

these versus 10 lOglo (l/c) since for partial-band or pulsed jamming the

fraction of the band jammed or duty factor is typically inversely proportional

to the signal-to-jaming noise ratio.)

The performance of convolutional codes on channel A(m) is considered next.

Here we consider only binary convolutional codes with interleaving. The view-

point we take is that interleaving changes channel E(m) into channel T(l).

This can be done by having m convolutional encoders and decoders. Each bit

in a block of m bits that is transmitted comes from a different encoder and

is decoded by a separate decoder. With this interleaving we have the

channel T(l) which is just a binary erasure channel with erasure probability e.

The bit error probability P for rate k/n convolutional codes with

Viterbi decoding is bounded by ([9 I Eq. (6-11))

P < w.P. (2.40)eb k j=df

where d is the free distance of the code, w. is the total information weight

of all paths of weight j ,and P. is the error probability between two wordsK J

differing in j symbols. For the binary erasure channel P. is just - F.

since for an error to occur all j symbols must be erased and given that all

LI - - - - - -- - - --
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symbols are erased the error probability is In Figure 2.3 we plot the

bit error probability given in (2.39) for two convolutional codes of rate .

These codes are the constraint length 7 (v = 6) and constraint length 9 (v - 8)

codes as given in Table B-2 of [ 9].

Consider now the case of no side information available. For R-S code

the probability of a received symbol being in error p is

Ps = c(1 - 2
"m) = (2 m 1) 2 m . (2.41)

The error probability P of a decoded symbol with bounded distancee~s

decoding is
0

p J n n-jP = - ()P (1-Ps) ) (2.42)
e,s n-k n J 5 5

If there are more than (n-k)12 errors the bounded distance decoder detects

with high probability that too many errors have occurred. In this case the

decoder sets the decoded symbol equal to the received symbols. The decoded

bit error probability Pe,b is then given by

= 2m-
1

P =-- P P . (2.43)
e,b 1- ()m e,s 2m-l e,s

We have plotted in Figure 2.4 P for the (31,15) and the (255,127) R-S

codes vs 10 log10 (i/) on channel L(5) and &(8) respectively.

The performance of the convolutional codes with interleaving on

channel A(m) is the same as the performance of a convolutional code on

A(l), a BSC with crossover probability z/2. For this we use th, bound in

(2.39) with Pj given by

OJ
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2 ( )(/2)i (1-e/2)i , J odd
i= (J+l) 12

SP.= (2.44)

JE 1 j -1 ( /2) 1(1i - /2) J -l ' i  , j even

i=j/2

This bound is plotted in Figure 2.4 versus 10 logl0 (l/c).

* In comparing Figure 2.3 and Figure 2.4 we observe that the degradation

forconvolutional codes (X'sed in conjunction with interleaving) between

channels A(m) and A(m) is much more than the degradation for R-S codes.

-* Furthermore when side information is available the convolutional codes

performance is comparable to the (31,15) R-S code. The (255,127) code is more

complex and has better performance than the other codes. These results are

not surprising since with side information available the channel capacity

does not depend on the memory length so that interleaving should not cause a

degredation in performance. However without side information available the

capacity is an increasing function of the memory which implies that inter-

leaving without side information should degrade the performance. The R-S

codes which do not use interleaving perform better than the convolutional

codes with interleaving when no side information is available as expected.

Other codes will be studied in the next two chapters.

0
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CHAPTER 3

CODING FOR CHANNELS WITH PARTIAL-BAND

JAMING AND COHERENT DEMODULATION

3.1 Introduction

In this chapter we consider a frequency-hopped spread-spectrum

communication system subject to partial band-jamming. We consider both binary

phase shift keying (BPSK) and M-ary orthogonal signaling forms of modula-

tion. The modulated signal is frequency-hopped to produce the trans-

mitted signal. The received signal is first frequency-dehopped and then

coherently demodulated. The jammer adds noise to the signal over only a

fraction of the frequency band the transmitter is using.

In Section 3.2 we describe the channel models we will use. In Section 3.3

we calculate the capacity of BPSK and K-ary orthogonal signaling in the

presence of partial-band jamming. We consider channels with and without

side information concerning the presence of the jammer and also channels

with memory. In Section 3.4 we repeat these calculations for the cutoff

rate. Finally in Section 3.5 we evaluate the performance of specific codes

when side information is and is not available. This is then compared to the

cutoff rate and the channel capacity.

3.2 Channel Models

In this section the channel models for frequency-hopped spread-spectrum

camunication using BPSK and M-ary orthogonal signals are given when there

is partial-band jamming. As mentioned in Chapter 1 we treat the frequency

hopper and dehopper as performing inverse operations on the modulated
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signal. The output of the frequency dehopper consists of two additive

terms. The first term corresponds to the received signal in the absence

K. of noise, while the second term is due to the jamming noise and is nonzero

only if there was jamming noise at the same frequency as the transmitted

signal.

Consider frequency hopping with m symbols per hop. First we describe

the channel for a particular hop for both BPSK and M-ary orthogonal signaling.

U For BPSK the channel input alphabet is A - [0,1) while for M-ary orthogonal

signaling A = 0,1,...,M-1). Assume that the particular hop begins at time

t = 0 and is of duration MT where T is the duration of a single symbol. Denote

by X., 0:5_ j < m, the random variable which takes values in A. When the input

XJ, 0-5 j < m, takes the value i E A, the data modulated signal si(t - iT) is

the input to the frequency hopper during jT - t 5 (j+l)T. The signal si(t)

is given by

t vf'- pT(t) sin(w Ct + (-I) i r/2) (3.1)

for BPSK while for M-ary orthogonal signaling [si(t)]i E A is any orthogonal

signal set with each signal having power P, duration T and center frequency

a c (see for example [201,Sec. 5-3). In (3.1) pT(t) = I for 0 5 t < T and

pT(t) = 0 otherwise, P is the signal power and wc is che center frequency

of the modulated signal. The frequency hopper changes the frequency of the

modulated signal in different hops to one of q frequencies according to a

specified hopping pattern to produce the transmitted signal si(t-jT)

during the interval jT - t < (j+l)T, 0 _ j < m. For BPSK

si (t) = f p (t) sin(, 2 t + (-l)i r/2) (3.2)
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and w. 1 A:5 q is one of the q possible frequencies of the hopping

pattern. For M-ary orthogonal signaling (si(t))i E A is the same

orthogonal signal set with center frequency w. instead of wc.

The jamming J(t) consists of a sum of bandpass Gaussian processes:

* q
J(t) 1 Jimi) (3.3)

where the process [Ji(t); 0 < t < -) is a bandpass Gaussian process with

- center frequency wi 1 < i < q, the q distinct frequencies of the hopping

pattern. Let S(w) be a low pass spectral density, i.e. S(w) = 0 for IWI > L

for some )L" We make the simplifying assumption that if Ji(t) has nonzero

power then S(w - wi), is the shape of its spectral density. Each process

which has nonzero power has identical statistics and thus the power in each

£process is the same. In Appendix B we show that if the receiver has side

information concerning which frequencies are jammed and at what power levels

then in fact the worst case jamming strategy is for the jammer to place equal

amounts of power in a fraction of the possible transmitted frequencies bands

and no power in the remaining fraction.

When si(t -jT) is transmitted,0_< j < m,the received signal r(t) consists

of the sum of the transmitted signal and the jamming signal:

r(t) = si(t -jT) + j(t), JT 5 t 5 (J+l)T (3.4)

(Here we assume, without loss of generality that all time delays are zero.)

The signal £(t) at the output of the frequency dehopper is then given by

r(t) = i(t - jT) + 31(t) jT < t - (j+l)T (3.5)
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where i(t-JT) is the modulated signal and 3A(t) is the bandpass process

with spectral density S(w-w) obtained from j(t) when j(t) is f£equency

translated by wt - wL and then filtered by an ideal bandpass filter with

center frequency wc and bandwidth 2wL . Here wL is chosen so that si(t) is

essentially unaltered when passed through an ideal lowpass filter with

cutoff frequency wL. With probability p,j,(t) has nonzero power. A

detailed model for the frequency hopper and dehopper is given in [13].

The models for the ).amming signal and transmitted signal have several

implicit assumptions that sh3uld be clarified. First, it is assumed that

the jamming signal is a stationary random process. Second, it is assumed

that the transmitter does not know which frequencies are being jammed with

nonzero power. If the transmitter knows which frequencies are being jammed,

the transmitter could put more power in those frequencies jammed and less in

the frequencies unjammed. However, if the janmmer knows the transmitter is

putting more power in a par'ticular set of frequencies, the jammer might

wish to change the frequencies being jammed periodically in which case the

transmitter might not be able to determine which frequencies are jammed at

a particular time. Assuming that j(t) is a stationary random process and

that the transmitter does not know the frequencies being jammed is equivalent

to allowing the jammer to change the frequencies being jammed often enough so

that the transmitter cannot determine the jammed frequencies. A further

assumption made is that during each hop either all the symbols are jammed

with equal power or there is no jamming signal kTith nonzero power) for

all m symbols. This is perhaps the most restrictive assumption. If, however,

the jamming signal changes much more slowly than the hopping rate then this

is a reasonable assumption.
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The demodulator has as input ;(t) given in (3.5). For BPSK the demodulator

computes the correlation Y between r(t) and si(t)

(J+l)TYJ . Y IJ r(t) cos wc t dt, 0 5 j < m (3.6)

JTC

where y is a normalization constant to be defined later. For M-ary

orthogonal signaling the demodulator computes

(J+l)T
yi = Y J(t)i(t-jT)dt 05 j < m, i E A . (3.7)- i,j T 3.t

Thus for BPSK the channel is described by the input X and Yj, 0< j < m.

For M-ary orthogonal signaling the channel is described by X and

Y , i E A, 0:< j < m. Since we assume that the jammer's signal is stationary

and that the transmitter does not know which frequencies are being jammed the

channel is memoryless from hop to hop so that the channel is completely

described above.

To compute the distribution of the demodulator output we introduce a

random variable Z which is nonzero if the jamming signal at the output of

the frequency dehopper has nonzero power and is zero otherwise. Let

P[Z - 7 3 = 0 and PCZ = 0] = 1 -p. Then we can describe the signal ^(t)

at the output of the frequency dehopper by

;(t) = i(t- jT) + Z.J(t) (3.8)

where !(t) is a bandpass Gaussian process with spectral density S (,u- w).

We now assume that S(u-w) is flat in the interval [Wc-L ,c +'.L with
c c

two sided density N
J

.L
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For BPSK Y in (3.6) with y =(4/NT) is a random variable given by

Y vE (-ll + z1 (3.9)

J

where E - PT is the energy per symbol and 1l is a zero mean Gaussian random

variable independent of Z with variance 1. Thus Zn also has mean square 1.

The density of Y given X J i and Z =Vi (jammer on) is given by

N J•p(yi1x = i, Z = A/I7 ) -- (2r) " . expt- 4 i-vrK'] . (3.10)

with a = (-l) . When Z = 0 (jammer off) we have

rry -2EV7j (-l)-I 1 X i, Z=0)=l . (3.11)
Jj

Note that if Y1 # ,E/N, (-1) i then with probability 1 the jammer was on

(Z =- /p ). Using this test the receiver can tell whether or not the

jammer was on during a particular hop. In this case we say the receiver has

side information available. However, the receiver may just decide X. = I

if Y. < 0 and X. = 0 otherwise. In this case we say the receiver makes hard

decisions and disregards the side information. Alternatively the receiver

may make hard decisions and retain the side information.

For M-ary orthogonal signaling Yi~j in (3.7) with y = (2/NJ T)Y and

X. = i is given by

0 Yk,j =  5k,i + Z." k = 0,1,...,M-1 (3.12)

where E is the energy of each signal i1 the set, Z and 7 are the same as

* before and 5k,i = 1 if i = k and 8 k,i = 0 otherwise. The density of Yk,j

given X. = i and Z = N1/- is given by (3.10) with = . If Z=O

.3N$
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P -kJ- . 2 kiXj - i, Z -0O] i

PYk X0 1(3.13)

Thus side information is available by checking if YkJ j V k' i for

some i E A. Hard decisions correspond to deciding X = i if YiJ> Yk.J

*for all k # i. We consider hard decisions both with and without side

information available.

3.3 Channel Capacity

- In this section we derive expressions for the capacity of the channels

described in the previous section. The capacity is found from the game

theoretic formulation of Chapter 2 with the jammer choosing the duty factor p.

We compare this to the case of uniform jamming (p =1). We conclude that

provided codes with rate less than some critical rate are used uniform

jamming is the worst case jamming strategy.

First consider BPSK and side information available to the receiver.

There are two binary input channels invoived here. When the jammer is on,

the channel is just an additive Gaussian noise channel with signal

energy-to-noise variance ratio 2EP/N. The capacity C(EP/NJ) of this

component channel is achieved with a uniform distribution on A and is given

by ([ 6 ] [ 27, Problem 4.14])

C(x) - (X2  g(t)Zn cosh(x2 +tx)dt . /Zn2 (3.14)

where g(t) is the density of a zero-mean, unit variance Gaussian random

variable given by

g(t) = (2n)" - e (3.15)
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When the Jammer is off the component channel is a binary noiseless

channel with capacity 1 achieved by a uniform distribution on A. Thus both

component channels have the same input distribution achieving the component

capacity. In this case from (2.18) the capacity of the composite channel is

independent of the memory length m of the channel. Thus the capacity

C(E/Nj) for BPSK with worst case partial-band jamming is given by

C(E/N) m min [p C(Ep/N J) + (l-p)] (3.16)

The minimum in (3.16) can be found numerically or by setting the first

derivative equal to zero:

[PC(Ep/N) + (1-p)3 = 0

or

C(EplNj) + Ep/N C'(Ep/Nj) 1 (3.17)

where C'(x) = CC(x)/Ix . From (3.17) we can determine the dependence of the

worst case p = p* on the signal-to-noise ratio E/N as

1 E/Nj < a

p* = (3.18)

CI E/N >a

where Ce is the solution of

C (u) + aC'(,C) = 1 . (3.19)

Using (3.18) in (3.16) we obtain
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SC (E/Nj) E/N j < C

C(E/INJ) (3.20)

- cC/ ) E/Nj

Solving (3.19) we find that o - 1.649 and C(a) = 0.655. If we now have a

different type of receiver capacity e) in the presence of additive

Gaussian noise with signal-to-noise ratio P then with partial-band jamming

(3.16)-(3.20) are valid with C replaced by C. For BPSK with hard decision

receiver and additive Gaussian noise the error probability is given by

- Q(/2E4 j) where Q(x) = f g(t)dt. The capacity is then given by [27)
x

C2 (P) = 1-H 2 (Q(,/o)) (3.21)

where B = E/Nj. Using (3.21) in (3.19) and solving for a we find a = 2.156

and C2 (c2) = 0.630. Thus for BPSK with hard decisions and side information

the capacity C2 (E/Nj) is given by

F C 2(E/N J) E/N j < a 2

C 2 (E/Nj) = - (3.22)

i-2 - 2C2 @2 ) EN2)

E/Nj E/N 1 2

Now consider the case of no side information available and hard

decisions. Since side information is no longer available the capacity is no

longer independent of the memory. However this channel fits exactly the

channel model in the example of Section 2.5 with e = 0 and f(p) =Q(.2 '/,)

so that the capacity is given by (2.35) and (2.36). The minimization in
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(2.34) must in general be done numerically. However for the case of no

memory (m - 1) the channel becomes a BSC with crossover probability p given

by the average of the crossover probabilities of the two component channels:

p = p. Q (fplN.) + (I-p).0 = p Q (2E/NJ) (3.23)

so that the capacity is the minimum of 1-H 2 (p) over p E [0,1]. Since

1-H 2 (x) is decreasing function of x we can equivalently maximize p over p

Q (-2_E/NJ) E/IN < C1

max p (3.24)

O-~ E/IN dk
N E/NN J 3

in which case

C(E/N ) = m 1 I-H 2 ( p ) = J (3.25)

1 - H2 (I) E/N >

where a3 = 0.709, a3 0.08285, and C(a 3 ) 0.480.

For M-ary orthogonal signaling we consider only the case of hard

decisions. The probability Pe,s of an error (Yk,j > Yi,j for some k # i

when X= i) for uniform jamming can be calculated to be [1]

Pe~s (E/N ) M I- 1) ' (t - F -2
)es (BI (t)g(t)dt (3.26)

where g(t) is given in (3.15) and _(x) = l-Q(x). For the case of side

information available and partial-band jamming the capacity can be calculated

using (3.16)-(3.20) with C(ze) replaced by CM(P (s)) where
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CM(P) 1 Clog 2M + (1 P)log 2 (1 P) +P log 2 (P/(M-l). (3.27)

The capacity (in M-ary units) is then given by

CM(PS(E/Nj)) E/N < YM

CM(E/Nj) = (3.28)

1 - YM YMCM(P (YM) EINI /E/ N/N i YM

When side information is not available the capacity depends on the memory

length. For m = 1 the channel is a memoryless M-ary symmetric channel

(,rsC) with symbol error probability given by the average error probabilities

of the two component channels. As before the capacity is a decreasing

function of the symbol error probability so that maximizing symbol error

probability is equivalent to minimizing capacity. The maximum of the

average error probability P (E/N.) is given by
e,s .

s(EIN = max P P(Ec IN)0< <_ s

s P(E/N) E/NJ <XM

(3.29)

-M~s EIN Z!
E/N~ ~

The capacity C (E/N ) is found by using (3.27) with P P (E/N ) given in

(3.29). Thus
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C(Ps(E/Nj)) E/Nj <

CM(E/NJ) (3.30)I14(ii~~) E/N EI '

The values of y CM(YM), XM and Ps(X.) are given in Table 3.1 for

M - 2k , k = 1,2,...,8.

Table 3.1. Values of constants used to determine capacities for M-ary
orthogonal signaling.

M C M(YM) Im PS ( M) CM(XM)

2 2.156 0.630 1.418 0.117 0.480

4 2.402 0.596 1.701 0.211 0.461

8 2.681 0.563 2.012 0.287 0.443

16 2.987 0.532 2.345 0.350 0.424

32 3.315 0.504 2.699 0.402 0.407

64 3.664 0.478 3.069 0.446 0.390

4 128 4.030 0.454 3.455 0.484 0.374

256 4.410 0.432 3.853 0.516 0.359

* To interpret these results concerning the channel capacity we consider

Theorem 2 of Chapter 2 which says that there exists codes with rate r < C,

such that reliable communication (error probability less than \) is possible.

* In all cases considered here the capacity is a function of E/N the svmbol

gJ
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signal-to-noise ratio (SNR). If we use codes of rate r then the bit

signal-to-noise ratio Eb/NJ is given by

Eb/NJ = (E/Nj).(l/r log 2M)

U where M = 2 for BPSK. Thus for reliable communication we must have

r < C(Eb/NJ. r log2M)

- or
Eb/NJ > C 1 (r)/r log 2 M 

(3.31)

where C 1(r) is the inverse function of the capacity. The performance of

a particular modulation-demodulation scheme can be measured by the right

hand side (RHS) of (3.31) and determines the bit signal-to-noise ratio needed

for reliable communication. /

For soft decision BPSK the capacity with side information is given by

(3.20). In Figure 3.1 we plot RHS of (3.31) with C given in (3.20). This

is compared to the bit SNR needed to achieve capacity for uniform jamming.

Note that for small enough code rate (r < 0.655) uniform jamming is the

optimal strategy for the jammer.

For hard decisions BPSK (binary output quantization) we have two cases

to consider. With side information available,so that capacity is

independent of memory length, the minimum E b/NJ as a function of r is given

in Figure 3.2. The rate below which uniform jamming is optimum is 0.630.

When side information is available the capacity depends on the memory

length. For m = 1 the capacity is given by (3.25) for 1 < m < the

L
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capacity is given in (2.35) with c p and c m,k given by

( (l-p) + p(-Q (2-/INT)) m  k = 0

m, k (3.32)
p P/Nj))m -k k 1,2,...,M

The minimum in (2.35) no longer has the simple form of before. In

Figure 3.2 we plot the Eb IN necessary for reliable communication for

m = 16 without side information and Eb/NJ with side information.

For M-ary orthogonal signaling the corresponding curves for m - 1

(memoryless) and M = 4,8,16,32 are shown in Figures 3.3-3.6. The rates

below which uniform jamming is optimal are given in Table 3.1. The increase

in E bN J need to achieve capacity at low rates is due to the form of modulation

employed. The increase for high rates is due to the decrease in the codes

redundancy at these rates. M-ary orthogonal signaling can also be viewed as

a form of coding. It is an orthogonal code with rate (log 2M)/M. If an

outer code with rate r is used on the code words of the M-ary orthogonal

code then the overall code rate r' is r' = r log 2M/M. Figures 3.3-3.6

0 Qcould be plotted versus the overall r' instead of r, however, the same

effect for low and high code rates would still be present. We could also

compare these curves to those for BPSK to determine the loss incurred by

using an orthogonal code as an inner code in a concatenated coding approach.

Even though M-ary orthogonal signaling (for finite M) is less efficient

than BPSK, we shall see that it can be combined with Reed-Solomon codes to

provide performance comparable to BFSK.

Se
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3.4 Channel Cutoff Rate

3. In this section we derive expressions for the computational cutoff

__rat -for channels with partial-band Jamming. The cutoff-zate-of BPSK---

with soft decisions, side information and memory has been calculated by -

Viterbi (431. We extend these results to include BPSK with hard

decisions with and without side information available. We also calculate

the cutoff rate for M-ary orthogonal signaling with soft and hard decisions .....

*Consider first the case of side information available. From (2.28) the

cutoff rate with side information and memory m is given by

R0(m) = I m; log2 ElJm(s)] (3.33)

where

J(s) = 2 R O' s (3.34)

and R is the cutoff rate of the component channel s . However (3.33) andan OR,ss

(3.34) are valid only when the distribution that achieves R in (2.27) is
O's

if the same for all component channels. This assumption will be true for all

channels considered here. Viterbi [43] has computed the cutoff rate for the

case of BPSK with soft decisiohs and partial band jamming as

R0 (m) ( rn I m log2min + 1 + e / (3.35)0<_P<1Lk  L j

+ -E INj
i - log 11+ e E/N < m

(3.36)

1 Pm E/N ~IA - _! log 2  E /N E/ M
m an ieie J

The constants in (3.36) are given in Table 3.2.
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Table 3.2. Constants for computing cutoff rate for BPSK with
Ipartial-band jamming.

m Pm V m Ym rm

1 .368 1.000 0.6038 1.707

2 .882 0.850 1.439 1.443

3 1.646 0.759 2.670 1.187

4 2.854 0.579 4.603 0.963

5 4.856 0.475 7.796 0.784

6 8.287 0.395 13.258 0.646

7 14.303 0.335 22.819 0.544

8 25.018 0.288 39.829 0.467

For M-ary orthogonal signaling with uniform jamming, m = I and sof:

decisions the channel cutoff rate is given by [16]

-E/2N~ Jf

R0 (M) = -log2 j1 + (M-1) e (3.37)

where R is measured in bits per transmission. For partial-band jamming
0

with side information available, memory m = I and soft decisions the cutoff

rate R 0(M) from (3.33) and (3.34) is given by

R0(M) min - I- +p 1+ (M-l)e (3.38)
0 0< :5Og1 2 M 2 [ Ep/2N I

The minimization can be done easily to give the worst case * = for

partial-band jan ing as

F
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E/N < 2

P 2 EIN 2 (3.39)

, EE/N J

so that flgM-log I -E /2Nj]

1o2 1+ (M-1)e , E/N < 2R_ 0 (M)  102 L (.0

1log 2M - log 1l+2(M-1)e l/(E/N), E/N 2! 2

It is interesting to compute the limit as M- - in (3.40).

(E/2N)loge , E/NJ < 2

im Rn 0(M)= (3.41)

* log 2 (e E/2Nj) , E/N > 2

while for uniform janming (p = 1) the limit as M - of R is just

(E/2NJ)log2 e. Thus for uniform jamming R0 is a linearly increasing function

of E/N while for partial-band jamming R0 is increasing logarithmically.

Similar calculations can be done for the case of memory m > 1 and M-ary

orthogonal signaling.

For BPSK and hard decisions the error probability with uniform jamming

is given by

p Q(./2 / ) (3.42)
J

and the cutoff rate by

Ro a1 - log,(l+2T(T-p) )

= -Iog.,7 1 -(l+ p))/2 (3.43)

6
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From (3.33) we can compute the cutoff rate -(2)
R0 (m) for partial-band

jamming with side information, hard decisions and memory m as

(2) 1 mi] (3.44)

where p = Q( /)pN . The minimization in (3.45) can be done to yield

1 - log 2 (l+2i(I-p)) E/N < m

RO 2 (M) fi(3.45)

1- mg2 (1 + EE !- m

The constants ym and rm are given in Table 3.2 for 15 m _8.

When no side information is available the channel is simply a block m

memoryless channel. The cutoff rate is given by (see (2.31))

R~)= rai 2 - og (km m (3.46)R0) 0<-p_ 1 m 0

0 O0:5P :5 m 102 k=0 k m,() mnZ(M jt(.6

with xm,k given in (3.32). For m = 1., however, the channel is simply a

BSC with error probability pQ(vf2Eo/Nj) so that minimizing the cutoff

rate is equivalent to maximizing the error probability. This maxi-um is

given by

Q Q(/2E-Nj) E/Nj > 0.709

p = max pOQ (2EcINJ) = (3.47)
0 ~ 1 0.08285 ElN !0.709

E/N , /

and the cutoff rare by using (3.1.7) in (3.43).
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For M-ary orthogonal modulation with memory m 1 1 and hard decisions

the cutoff rate R0 with uniform jamming is given by (measured in M-ary units)

='1[( (E/N +./(K-1W8 (E/Nj (3.48)

so that the cutoff rate with partial-band jamming is given by

(M)0 min 1.0-(1) + P(EP ) + (M ) Ps E NJ 2 (3.49)

={ 1.0-0 I[(l-Ps(E/N J ) + 4(M-I)Ps(E/Nj))J E/Nj < aM

. 0 l o M I + E- j E / N 3  M ( 3 . 5 0 )

where aM and 0M are given in Table 3.3. When no side information is

available the cutoff rate is found by using (3.48) with P replaced by Ps

given in (3.29).

detemine-(2)Table 3.3. Constants used to determine R(2)(".

M ,M OMIM

2 3.415 1.208

4 3.347 3.744
8 3.307 

9.240

16 3.335 21.443

32 3.444 48.915

64 3.627 111.088

.8
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We interpret these results in the same way as we did for capacity.

For all cases the cutoff rate R0 (E/Nj) is a function of the symbol signal-

to-noise ratio. If we use codes with rate r < R0 (E/Nj) then we must have

Eb/N > R 1 (r)/r.log2M (3.51)b J 0 2

for reliable communication (from cutoff rate considerations).

q In Figure (3.7) we show the Eb/NJ needed to achieve R0 for BPSK with

soft decisions and side information available (memory 1). Both partial-band

and uniform jamming cases are shown. For hard decisions with BPSK the three

4 cases (i) partial-band jamming, no side information (ii) partial-band jamming

with side information and (iii) uniform jamming are shown. In Figure 3.9

the case of hard decisions, side information and memory is considered for

m = 1,2,4,8. Notice that as m increases the necessary EbNJ also increases.

For capacity we saw a decrease in Eb/NJ when memory was increased. For

channels with memory capacity is a better measure of a channel reliability

than the cutoff rate. In Figures 3.10 and 3.11 the Eb/N J needed to achieve

is shown for 16-ary and 32-ary orthogonal signaling with hard decisions.

3.5 Performance of Codes

In this section we compute the performance of specific codes on channels

with partial-band jamming. We consider both BPSK and M-ary orthogonal

signaling forms of modulation with coherent demodulation. Three different

types of receivers are considered: (i) soft decisions, side information

available, (ii) hard decisions,side information available, and (iii)

hard decisions no side information available.
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There are several types of codes we consider in combination with the

different types of modulation. We consider channels with memory (m > 1) and

without memory (m - 1). One way of distinguishing codes is by the

alphabet size of the code symbols. Codes which have symbols over alphabets

larger than two are capable of treating symbols from an M-ary form of modula-

tion as one symbol in the code. Binary codes can also be used with M-ary

modulation by treating one symbol as log 2 M bits and encoding each bit

separately. This is a form of interleaving and when used on channels

without side information can degrade the channel reliability from capacity

considerations. However the performance of specific codes must be evaluated

since the overall performance depends also on the type of codes used on

these channels.

Consider first M-ary orthogonal signaling with no memory (m = ), no

side information available and hard decisions. The symbol error probability

for the worst-case partial-band jammer is given in (3.29). If we use R-S

codes in conjunction with M-ary orthogonal modulation then the decoded

symbol error probability P can be found by using (3.29) in (2.42) withe,s

Ps in (2.42) replaced by P (E/N ). The decoded bit error probability Pe,b

* can then be computed as

P L (3.52)
e,b 2 M-1 e,s

Another type of code with alphabet size greater than 2 is the dual-k

convolutional code [30], (441. This code has alphabet size 2k and can be

k
used with M-ary modulation (m 2 ). The performance of this code can be

evaluated using (2.40). The summation in (2.40) can be approximated by

the first several terms. The evaluation of (2.40) requires the calculation
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of Pis the error probability between two words differing in j symbols. This

calculation for an M-ary symetric channel is done in Appendix C.

A bound on (2.40) can be obtained by bounding P i by DJ where for anA bond n (.40)canbe btaned y bundng y D her fo anM-ary

symetric channel with symbol error probability P5 ,D is given by (27, Prob. 7.10]

m-2D M (_-j) Fs + 2J P-l) (3.53)

Using this bound on P the series in (2.40) can be summed for dual-k codes

with rate 1/v to yield [30]

P k 2 )D 2v
Pe,s <[I - vD v -1 - (2 k - 1 - v)D V12  (.4

The bit error probability can be evaluated using (3.52). The w. in (2.40)

can be evaluated from (3.54) by expanding the denominator into a series

in D. Doing this w. is the coefficient of the term Di.

Still another code which has code symbols of size greater than 2 is

pthe length n repetition code. This simple code transmits each symbol n times

in a row. The rate of this code is i/n. For a receiver with hard decisions

the decoder counts the number of times the receiver decides each symbol

was transmitted and then chooses the symbol that was decided upon the most.

If there is a tie between 2 or more symbols the decoder choses one randomly.

The symbol error probability for these codes is derived in Appendix C for

1 5 n 5 8. The form of the error probability P ise~s

n-l= I n - P L (_Ps) n-i (3.55)

e,s i 0 i s  3

where a. are constants that depend on M, the symbol size and P is the
Io s

uncoded symbol error probability.
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As mentioned previously we can also use binary codes with M-ary

modulation. We do this ly treating each M-ary symbol as log2M bits and

encoding each bit separately. The uncoded bit error probability Pb is

given by

-'b M fP (3.56)

Now the channel is a BSC with crossover probability Pb • The bit error

probability for binary convolutional codes can be evaluated using the first

several terms in (2.40) and using (2.44). The wj are tabulated in [9 1
Appendix B for some convolutional codes.

Now consider the case of hard decisions, no memory (m=l) and side

information available. For this case consider the repetition code with M-ary j
modulation. If just one symbol in a codeword is not jammed then the decoder

decides the transmitted symbol was the symbol received with no jamming. The

error probability in this case is zero since there is no noise in the unjammed

channels. Thus for an error to occur all n symbols of the repetition code

must be jammed. If the jammer is a partial-band jammer then the probability

n
of n symbols being jammed is p . The symbol error probability for this

code is

n-lmax [pnl -I i~sEO/j~(l-Ps(Eo/N))ni](3.57)

P = max ~p[~ Z a.iP * fl19--)-sJ)
e,s 0 < P < 1 i=O

where Ps( ') is given in (3.26). This maximum has the form
S

n-1
1 -- aiP (E/N )(1 - Ps(E/N) E/Nj < I,n

p (3.58)

B /(7/N1.\ E/Nj > A\1,
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for some constants AMn and BM. The bit error probability can be calculated

N using (3.52).

The performance of the repetition code with soft decisions and side

information available can also be computed. As with hard decisions, the jammer

is forced to jam all symbols in a codeword of a repetition code for an error

to occur. The symbol error probability can be computed as

p(n) (E/NJ) max {pnP (nEP/N (3.59)

where P ( -) is given in (3.26). The maximum has the form

P s(nE/Nj) E/Nji < 'PM,n

P (n)(E/N) = (3.60){M n E/N >Mn

(E/N j) n

where C-Mn and * M,n are constants.

For BPSK with memory m = 1 we can use binary convolutional codes or

repetition codes. The error probability for cases of hard decisions with and

without side information are calculated in the same way as for M-ary orthogonal

modulation so we do not repeat the calculations.

With BPSK and memory m > 1 we consider coding using codes with s-mbols

size larger than 2. The method we use to exploit the chanrel's memory is to

treat each m bit as one symbol in a code.
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The probability of a code symbol being in error for partial-band Jamming

with BPSK is given by

P max p[l-(I-Q(2Ep/N,))m ]

0 <p <

I-(I-Q(V2E7N ))m  E/N < Z

J m

(3.61)

WZ

N EE/Nj 1 Zm

with W and Z given in Table 3.4.m m

Table 3.4. Constants used in computing symbol error probabilities in (3.61).

W z Q2Z_)m m m m

1 0.0828 0.7088 .1169

2 0.1565 0.7633 .1083

3 0.2225 0.8139 .1010

4 0.2827 0.8608 .0947

5 0.3379 0.9048 .0897

* 6 0.3890 0.9460 .0845

7 0.4365 0.9849 .0802

8 0.4809 1.0218 .0767

The decoded symbol error probability can be computed for R-S codes by using

(3.61) in (2.42). The decoded bit error probability P is then given bye,b
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Qr2_E(YI-j))m Pe,s EINj < Zm

Pe,b =Q(2Tm) (3.62)

m) P E/Nj I ZI ( I Q ( 2 m ))m e ps

We now give some numerical results to indicate the improvement obtained

by using codes on channels with partial-band jamming. We will be interested

in the average bit error probability Pe,b for a specific code or equivalently

the Eb/NJ necessary to obtain a certain bit error rate. Also of interest is

the worst case partial-band jamming strategy p . Since larger p means the

jammer's optimum strategy is to jam a larger band this might be a costly

strategy.

First we give numerical results for the channel without side information

and hard decisions. We give results for M = 32 (32-ary orthogonal signaling).

S1-3 -5In Table 3.5 the Eb/N J necessary for bit error probability 10 and 10

are shown for the length 31 R-S codes when used on this channel. Also shown
*

is the fraction p of the band for the worst case partial-band jamming

OP
strategy. For 10-1 error probability the (31,11) RS code requires least

energy Eb while for 10- 3 error probability the (31,13) code requires least

energy. The imn:ovement in performance obtained by the (31,11) code in

comparison to an uncoded system is 35.1 dB at Pe,b = 10 5.

The dual k codes performance on the c'annel with hard decisions, no

side information and partial-band jamming 's shown in 1.,le 3.6. The ratea

of the code is 1/v. The complexity of decoding these codes in terms of

storage is proportional to 2k and is nearly independent of %-. Notice that

S
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Table 3.5. Performance of length 31 R-S codes on channel with hard
decisions, no side information and partial-band Jamming
(32-ary orthogonal signaling, bounded distance decoding).

Pe,b 1 0  Pe,b 10 - 5

Code Eb/NJ (d) p Eb/NJ (dB) p

No Coding 20.50 0.005 40.50 0.00005

(31,29) 14.35 0.021 24.57 0.002

(31,27) 11.32 0.046 18.37 0.009

(31,25) 9.43 0.076 14.58 0.022

* (31,23) 8.16 0.111 12.68 0.039

(31.21) 7.26 0.150 11.13 0.061

(31,19) 6.62 0.196 10.02 0.088

(31,17) 6.19 0.237 9.23 0.118

(31,15) 5.95 0.283 8.70 0.151

(31,13) 5.84 0.335 8.38 0.187

(31,11) 5.94 0.388 8.27 0.226

(31,9) 6.26 0.442 8.41 0.268

(31,7) 6.82 0.497 8.83 0.313

(31,5) 7.79 0.557 9.68 0.360

(31,3) 9.95 0.618 11.34 0.410

(31,1) 13.90 0.681 15.56 0.464

0

6
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KTable 3.6. Performance of dual-5 codes on channel with hard decisions,
no side information and partial-band jamming (32-ary orthogonal
signaling).

P < 10-3  p < 10-5

e,b , ejb ,:o

v Eb/NJ (dB) --p Eb/Nj (dB) p *

1 (No Coding) 20.50 0.005 40.50 0.00005

2 12.95 0.055 20.22 0.010

3 8.93 0.207 13.32 0.075

4 7.53 0.381 10.79 0.180

5 6.97 0.542 9.44 0.307

6 6.75 0.684 8.79 0.428

7 6.71 0.806 8.44 0.541

8 6.75 0.912 8.27 0.643

9 6.85 1.000 8.20 0.736

10 6.95 1.000 8.19 0.819

11 7.05 1.000 8.22 0.895

12 7.13 1.000 8.29 0.963

13 7.22 1.000 8.35 1.000

14 7.29 1.000 8.43 1.000

15 7.36 1.000 8.49 1.000

L-

L"
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for small enough rates, the worst case of partial-band jamming strategy is in

fact uniform jamming (p = 1.0). An identical conclusion was obtained from

capacity and cutoff rate considerations.

Let us now compare the performance of the dual-k and R-S codes. In

comparing two codes we must keep the code rates the same. For example the

dual-5 code with rate (r = 2) requires Eb INJ = 20.22 dB for error probability

10- 5 . The (31,15) R-S code with rate !I requires only 8.7 dB. The rate

1/3(r = 3) dual-5 code requires Eb/N J I 13.32 dB for error probability 10
-5

while the (31,11) R-S code requires only 8.27 dB. The rate 1/10 dual-5 code

requires Eb INJ = 9.19 dB while the (31,3) requires 11.34 dB. The comparisons

made include not only the code under consideration but also the decoding

algorithm. The performance of the dual-k code was computed assuming maximum

likelihood decoding (Viterbi decoding) while the performance of the R-S code

was computed using bounded distance decoding. For high code rates bounded

distance decoding is nearly maximum likelihood. However, for low code rates

this is not the case. For example the (31,1) R-S code is actually just a

repetition code of length 31 and is capable of correcting some patterns of

29 errors with maximum likelihood decoding. The bounded distance decoder

only corrects 15 errors and no more. Thus, on the channel with hard decisions,

partial-band jamming and no side information, for low code rates (< 1/8)

R-S codes with bounded distance decoding become inferior to dual-k codes

0 because of the decoding algorithm. For moderately large rates (> 1/3) R-S

codes wizh bounded distance decoding are superior to dual-k codes with

Viterbi decoding.
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For comparison purposes we can bound the bit error probability for

KR-S codes with maximum likelihood decoding (M.LD) by using the union bound

[9, eqns. (1-28) and (2-22)]. The performance of the (31,5), (31,3), and

(31,1) codes are shown in Table 3.8. As can be seen the optimal duty

Ufactor p* is larger when using MLD than for bounded distance decoding.

Although MLD is not currently being implemented we shall see later that by

comgining a repetition code with a R-S code with bounded distance decoding

forces the duty factor to one.

The performance of binary convolutional codes with Viterbi decoding

(MLD) on the 32-ary channel using separate codes on each of the 5 bits in a

32-ary symbol can be calculated using (3.56), (3.29), (2.40) and (2.44) with

E= Pb We consider the rate constraint length 7 and 9 convolutional

codes in [9, Apnendix B]. In Table 3.9 we indicate the performance cU
these codes. Notice that these codes are inferior to the (31,15) RS code

with bounded distance decoding. Part of the reason for this is that binary

convolutional codes with 32-ary signaling are in effect interleaving and

so when side information is not present this interleaving degrades the

performance. Massey [23] considered using binary convolutional codes on

the M-ary pulse position moc:ulation photon channel. That channel fits the

models of chapter 2 and has side information available intrinsically.

Massey found that convolutional codes on the photon channel has performance

comparable to the R-S codes. We attribute this to the fact that side

information was available. Without side information R-S codes outperform

convolutional codes.
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Table 3.7. Performance of R-S codes or channel with hard decisions,

no side information, and partial-band jamming

(32-ary orthogonal signaling, maximum likelihood decoding)

Pe,b Pe,b < 10-5

Code Eb/N J(dB) €* Eb/NJ(dB)

(31,5) 6.89 0.684 7.81 0.586

(31,3) 7.71 0.945 8.60 0.771

(31,1) 10.61 1.000 11.76 1.000

Table 3.8. Performance of binary convolutional codes on channel

with hard decisions, no side information and partial-

band jamming (32-ary orthogonal signaling, Viterbi

decoding).

p -<50 p <10 5

e,b e,b

Code Eb/Nj(dB) * Eb/Nj(dB) ,

K=7 8.00 0.171 11.21 0.082

K=9 6.44 0.245 9.36 0.125

I

I
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We consider now repetition codes on the channel with and without side

information with hard decisions for the former case and with both hard and

soft decisions for the latter case. The case of 32-ary orthogonal

signaling and BPSK are examined. The symbol error probability for hard

decisions without side information is given in (3.55) with Ps = Ps(E/NJ)

given in (3.29). In Table 3.9 the performance of repetition codes of

length 3 n 5 8 is shown.

Table 3.9. Performance of length n, rate 1/n repetition codes on channel
with hard decisions, no side information and partial-band jamming
(32-ary orthogonal signaling).

P 10-3 Pe,b =0 - 5
: e,b

n EDNJ (dB) P Eb/N J (dB) p

3 13.21 0.077 23.24 0.0077

4 10.43 0.196 18.55 0.0301

5 9.18 0.326 15.28 0.080

6 8.57 0.451 13.50 0.145

7 8.26 0.564 12.40 0.217

8 8.12 0.666 11.69 0.293

The performance of repetition codes on the channel with side

inf.-rmation, hard decisions and partial-band jamming is shown in Table 3.10.

In Table 3.11 the corresponding results are shown for soft decisions. Note

that soft decisions can improve the performance by between 3 and A dB.
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Table 3.10. Performance of repetition codes on channel with side information,
hard decisions and partial-band jamming (32-ary orthogonal
signaling).

P 10 -3 P 10 -5

ebe,b

Code Eb/NJ (dB) P Eb/NJ (dB) P

(3,1) 9.58 0.264 16.25 0.057

(4,1) 8.36 0.438 13.36 0.139

(5,1) 7.86 0.604 11.86 0.240

(6,1) 7.70 0.748 11.04 0.347

(7,1) 7.71 0.868 10.56 0.449

(8,1) 7.79 0.966 10.29 0.543

4

Table 3.11. Performance of repetition codes on channel with side information,
soft decisions and partial-band jamming.

P = 10- 3  p = 10- 5
e,b e,b

Code Eb/N J (dB) Eb/N J (dB) 0

(3,1) 6.59 0.381 13.25 0.063

(4,1) 5.39 0.493 10.39 0.156

(5,1) 4.87 0.677 8.87 0.269

(6,1) 4.64 0.838 7.98 0.389

(7,1) 4.58 0.978 7.44 0.507

(8,1) 4.58 1.000 7.10 0.619

Sq

I
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We plot in Figures 3.13-3.15 the symbol error probability for

repetition codes of length 1,3,5, and 7 for the cases of i) hard decisions,

no side information, ii) hard decisions with side information, iii) soft

decisions with side information. Notice that with hard decisions there is

an optimal diversity or code length such that for fixed E IN the symbol
b J

error probability is minimized. For soft decisions with side information

however, the symbol error probability decreases as the diversity increases.

We will see in the next chapter that this is not true when there is

noncoherent demodulation and soft decisions. Notice also that for soft I

decisions with n large the optimum duty factor is one so that partial-

band jammers are neutralized.

These repetition codes can also be concatenated with Reed-Solomon

codes. In Tables 3.12-3.15 the preformance of R-S codes when used in .4

conjunction with repetition codes is shown. The R-S codes were

-3
chosen for each diversity to EbINJ for bit error probability 10 "

e ,b I - 3

P 1
Code Eb/NJ (dB) eb

(3,1) (31,17) 7.12 0.513

(4,1)(31,21) 6.57 0.702

(5,1)(31,21) 6.48 0.895

(6.1)(31,21) 6.61 0.968

(7,1)(31,23) 6.70 1.000

Table 3.12. Performance of repetition codes and R-S code on

channel with hard decisions and no side information

Li(32-ary orthogcnai signaling).
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Table 3.13. Performance of repetition codes and R-S code on

channel with hard decisions and side information

(32-ary orthogonal signaling).

Pe b1
0- 3

~e ,b
Code Eb/Nr (dB) P*

* (3,1)(31,17) 6.55 0.966

(4,1)(31,21) 6.31 1.000

(5,1)(31,21) 6.45 1.000

(6,1)(31,21) 6.61 1.000

(7,1)(31,23) 6.69 1.000

Table 3.14. Performance of repetition codes and R-S codes on

channel with soft decisions and side information

(32-ary orthogonal signaling).

EP

e ,b
Code Eb/NJ (dB)

(3,1)(31,17) 3.54 1.000

(4,1)(31,21) 3.28 1.000

(5,1)(31,21) 3.28 1.000

* (6,1)(31,21) 3.28 1.000

(7,1)(31,23) 3.26 1.000

0 •4- ll
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So far we have only considered the case of memory m - 1 (i.e. memoryless).

The case of memory m > 1 can most easily be examined by considering BPSK

with hard decisions and no side information. The symbol error probability
V

for a symbol consisting of m bits may be calculated in (3.61). If we use R-S

Mcodes of length 2m-i then the decoded symbol error probability can be

calculated using (2.38). The bit error probability is found by using (3.62).

.In Figure 3.16 the bit error probability for the (31,15) and (255,127) RS

*I codes is plotted versus E IN computed using (3.31a) with M = 2. The
b J

performance of the constraint length 7 and 9, rate binary convolutional

codes given in [ 99 Appendix B) with full interleaving (m = 1) is also shown.

Note that when the jammer is present for a particular symbol the uncoded

bit error probability is Q(vr2m) independent of the signal-to-noise ratio E/N .

For m = 5,Q(/2Z) = 0.0892 while for m = 8,Q(/2VW) = 0.0764. From Figure 3.16
m .m

we see that the convolutional codes perform much better on this channel relative

to the R-S codes than on the channel of Chapter 2. This is due to the fact

that the bit error rate when the jammer is on is very low (compared to ).

Although we expect interleaving to hurt the performance relative to uninterleaved

systems, the memory here is not very dominant. In the example of Chapter 2

the error probability is when the jammer is on so that the expected number

of bit errors is just m or 2.5 for m = 5, and 4 for m = 8. While for the

above channel the expected number of bit errors in a symbol is 0.446 for m = 5

* and 0.611 for m = 8 so that most symbol errors are caused by single bit errors.

-0
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CHAPTER 4

(V CODING FOR CHANNELS WITH PARTIAL-BAND JAMMING AND NONCOHERENT DEMODULATION

4.1 Introduction

In this chapter we examine the performance of frequency-hopped spread-

spectrum communication system subject to partial-band jamming with noncoherent

demodulation. We consider M-ary orthogonal signals with frequency shift keying

on multiple frequency shift keying (MFSK). The modulated signal is frequency

q hopped to produce the transmitted signal. The received signal is dehopped and

then demodulated to produce the channel output. The jammer adds noise to the

signal only over a fraction of the frequency band the transmitter is using.

The strategy of the jammer corresponds to the fraction of the band that is

jammed. We will consider the performance for the worst case jamming strategy.

The remainder of the chapter is divided into four sections. In Section 4.2

the channel models will be described for MFSK with noncoherent demodulation.

We will consider the '4F.iK for M-ary orthogonal signals to simplify the descrip-

tion. The capacity for the channel described in Section 4.2 is computed in

Section 4.3 with and without side information available at the channel output.

In Section 4.4 we repeat the calculations for the cutoff rate. In Section

4.5 the performance of specific codes is evaluated when side information is

and is not available. We compare the coded performance to the channel

capacity and cutoff rate.

6

. . ..6 , 1 I I I I I I . .
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4.2 Channel Models

In this section the channel models for frequency-hopped spread-spectrum

communication using MFSK are given when there is partial-band jamming. As

mentioned in Chapter 1 we treat the frequency hopper and dehopper as performing

inverse operations on the modulated signal. The output of the frequency

dehopper consists of two additive terms. The first term corresponds to the

received signal in the absence of noise, while the second term is due to the

jammer's signal. This second term is nonzero only if there was a jamming

signal in the band that the MFSK signal was transmitted in. This band includes

the frequencies of all possible MFSK signals the modulator produces.

Consider frequency hopping with m symbols per hop. Since as in Chapter 3

we assume the channel is memoryless from hop to hop describing the channel for

a single hop is sufficient to des( _je the channel. For MFSK the input

alphabet A = {O,1, .... M-1}. Assume that the particular hop begins at time

t = 0 and is of duration mT where T is the duration of one MFSK signal. When

the input X., 0 : j < m, takes the value i E A, the data modulated signal3

s.(t-jT) is the input to the frequency hopper during the interval jT < t t (j+l)T.

The signal s..(t) is given by

W) = 27 cos(w .t + ai)p(t) (j-l)T t < jr (4.1)
i

where w., 0 ! i : M, is the radian frequency of the signal, P is the power

and T is the duration. (We assume throughout that (t) } forms an
. i. E A frsa

orthogonal signal set.) In (4.1) 9., 0 < i 5 M-1 is the phase of the i-th

signal. The frequency hopper changes the center frequency of the mcdulated

signal in diff:erenc hops to one of q different center frequencies accordin
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to a specified hopping to produce the transmitted signal si(t-jT) during

the interval jT _ t < (j+l)T, 0 S j < m, given by

siCt) =/P T(t)cos(wI + wi)t + (4.2)

where w 1 5 1 5 q are the q different center frequencies of the hopping

pattern.

The model for the jamming signal is the same as in Chapter 3 so we doU
not repeat the descriptions here.

The received signal r(t) when s i(t-jT), 0:5 j < m, is transmitted

consists of the sum of the transmitted signal and the jamming signal:

r(t) = si (t-jT) + j(t), jT < t__ (j+l)T . (4.3)

(Here we assume without loss of generality that all time delays are zero.)

The frequency dehopper changes the center frequency of the received signal

according to the hopping pattern of the transmitter. A possible random

phase shift is also introduced. The signal r(t) at th" output of the

frequency dehopper is then given by

r(t) = yr2 cos( i t + i)PT (t)+j (t) (j-l)T _ t < jT (4.4)

where j (t) is the bandpass process obtained from when j(t) is frequency

translated by -,u and then filtered by an ideal bandpass filter with center

* frequency w. and bandwidth 21L. The bandwidth rL is chosen large enough

so that each of the MFSK signals is essentially unaltered when filcered

by this bandpass filter. Also in ( ) is a random phase which accounts

* for the phase introduced by the frequency hopper, dehopper, and an_

transmission delays.
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The demodulator we consider processes the received signal r(t) by

computing the M-dimensional vector Y(J) . (YIJY2,j' .'YM-Ij) where

0 y- ---- M-1 (4.5)

The density p(yk j1 X=iZ=1/p) of Yk,j given X J i and the jammer is on

M can be shown to be given by

rYkexp (2 +0 2 )]Io(Pykj) k = iYkJ ep[(Yk, J Y~

P(Yk,j IX= i,Z /P) (4.6)

{Y~e~f4 k2  k 0 iYk~jexp (-k yk~j

where 0 = 2PT/Nz - 2 E/NjZ and 8T is defined as the energy per transmitted

symbol. When the jammer is off (Z =0) we have

PYi =4! E N i,kXj - iZ =] - (4.7)

where 8i,k is 1 for k = i and zero otherwise.

Note that the receiver can tell given Y whether or not the jammer

* was on during the hop by checking if Yk, 7F E/Nj k for some i so that
k,j j i ,k

side information is available. However, the receiver might just decide

that si was transmitted in [(j-l)T,JT] if Yi~j • Yk,j k # i. In this case

the receiver makes a hard decision and disregards the side information.

Alternatively the receiver may know which hops were jammed and make hard

decisions. In the next section we compute the capacity of the partial-band

noise jamming channel for the cases stated above.
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4.3 Channel Capacity

In this section we derive expressions for the capacity of frequency

hopped MFSK with partial-band jamming. We compare this to the capacity

when the jammer corrupts the entire frequency band of the system (p 1 1).

We conclude that provided codes of rate smaller than some critical rate are

used, p = 1 is the worst case partial-band jamming threat.

We treat the case of the receiver having side information first. When

the jammer is on the channel is a M-ary FSK additive Gaussian noise channel

with signal energy-to-noise ratio 2Ep/N . The capacity CM(Ep/NJ) of this

component channel is achieved with a uniform input distribution on A. When

the jammer is off the component channel is a M-ary symmetric channel with

error probability zero and capacity (measured in M-ary symbols per channel

use) equal to- 1.0. Thus both component channels have the same input

distribution that achieves capacity. In this case from (2.18) the capacity

of the composite channel is independent of the memory length m of the channel.

The capacity C(E/N ) for M-ary FSK with worst case partial-band jamming is

given by

M(E/Nj) = min .1 C(EP/NJ) + (l-P)1 (4.8)

The minimum in (4.8) can be found numerically or by setting the first

derivative equal to zero:

CM(EINj) + (l-p)] = 0

or
C
C (Ep/IN) + EcIN~ C' (E c/N) 1 (4.9)

M JM
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where C'(x) - aC(x)/Bx . From (4.9) we can determine the dependence of the

worst case p - p on the signal-to-noise ratio E/N as

1 E/NJ< YM

P* = M (4.10)

where YM is the solution of

CM(YM) + , C'(YM) ( 1 (4.11)

Using (4.10) in (4.8) we obtain

CM(E/N J) E/Nj < YM

CM(E/Nj) - (4.12)

,1 - Ycm(YM) FIN
EIN J

U If codes of rate r (measured in M-ary units) are used then reliable

comnunication is possible provided r < C(E/Nj) (see Theorem 2, Chapter 2).

In the case E/N > Y. reliable communication is possible provided

p

r< -1 - YMCM(YM)
E/N

or

E/ ., -YmNcm1(ym ) "m((4.(1M))
IJ (l-r) = (l-r) (4.13)

Since E is the energy per transmitted signal and log2M bits are transmitted

per signal the energy per information bit with code of rate r is

i-
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Eb/NJ- (E/Nj)/r log2 M

so that (4.13) becomes

E IN >YM(l-CM(YM)) (.4
Eb/NJ > log2 M(l-r)r (4.14)

We wish to choose the code rate that minimizes the right hand side of

(4.14). The minimum can easily be shown to occur at r = r* = %. Thus for

the optimal code rate we need

S> 4 M(l (M) (4.15)b IJ • log2 M

This holds provided E/N > y or equivalently CM(yM) < 1. Note that so far

we have not specified the type of receiver (e.g. hard decisions, soft

decisions). For a particular receiver structure we need only compute CM(x)

and C'(x) to solve (4.11). Notice from (4.10) that provided E/Nj < YM or

equivalently CM(E/NJ) < yM the worst case partial-band jamming strategy

is in fact uniform jamming.4
For binary FSK with soft decisions (so side information is available)

C2 (x) has been computed [5 1 as

C2 ) exp[-x 2) j f yOy, expl- k (y 0 +y2)]1 0 (2xy)
C2(x) 0 ex[x]'0 0 1

log 0(2y) 1dydy1  (416)• og o(2x--O) +O(2xyl) ~oY

We can also compute C2(x) by differentiating (4.15) for soft decisions with

binary FSK and partial-band jamming
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(cEINj) EINj < 2.4137

C2 (E/N) =  (4.17)

1 .1741 E/N3 1 2.4137
E/

Notice in this case YM - 2.4137 and C(YM) - 0.51359 > 0.5 so that (4.14) is

not valid. The optimal code rate in this case can be found numerically to be

approximately 0.48.

For M-ary FSK with hard decisions the capacity CM(x) is given by (3.27)

with P replaced by P s(E/N ) given by

P(E N) - 1 E (-I(1) expt- E/N (l - l/j)] . (4.18)
J-2

For par~tial-band jamming with side information available and hard decisions

the capacity CM(E/NJ) can be computed using (4.8)-(4.12) as

r M (P5 (E/N.,)) E/N~ <

CM .(E INJ) - (4.19)

M YMCM,(P s(YM) EI ti1 ErINj i. 9

where yM tp a constant. In Table 4.1 we list the values of and CM(YM)

for M - 2,4,8,16 and 32. Notice that CM(yM) < so that the optimal code

rate for these cases is r - .

When side information is not available the capacity depends on the

memory length of the channel. For m 1 1 the channel is a memoryless MSC with

symbol error probability given by the average of the error probabilities of the
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S.component channels. Since capacity is a decreasing function of the symbol

error probability maximizing symbol error probability is equivalent Co

minimizing capacity. The maximum of the average error probability Ps(E/N.)

has been computed [15] as

p. (E /NJ)- max Ep Ps(Ep/N)]

05 J -ps (./N J) E/N i < %

E/N- (4.20)

The capacity is found using (3.27) with P = Ps(E/Nj) given in (4.20).

Thus the capacity C (E/Nj) with no side information is given by
M J

CM (Ps (EINj)) EINJ < KM

CM(E/NJ) (4.21)

M E/N iENj x

The values of X, Ps(%M) and CM(X,) are given in Table 4.1.

Table 4.1. Values of constants used to determine capacity for M-ary FSK.

C NC(YM) P (XM) C (%M)

2 3.0169 0.4982 2.0000 0.1839 0.3114

4 3.275 0.4878 2.3830 0.2933 0.3311

8 3.6610 0.4721 2.7821 0.3687 0.3384

16 4.0132 0.4540 3.1924 0.4259 0.3380

32 4.3882 0.4354 3.6132 0.4715 0.3333
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To interpret these results we plot the Eb/NJ needed to achieve capacity

(see 3.31b).

For soft decisions binary FSK the capacity is given in (4.17). In

Figure 4.1 we plot Eb/NJ needed to achieve capacity. This is compared to

* the Eb/NJ needed to achieve capacity for uniform jamming. For rates less

than 0.513 uniform jamming is the optimal partial-band jamming strategy.

Notice the increase in Eb IN necessary for reliable communications

for low rates. This did not happen for BPSK with soft decisions.

We explain this increase as the noncoherent combining loss encountered

when the receiver does not demodulate the transmitted signal coherently

and the code rates are small.

For hard decisions M-ary FSK with and without side information the

- E b/N needed for reliable communications is shown in Figures 4.2-4.6 for

M - 2,4,8,16, and 32. The rates below which uniform jamiming is optimal

are given in Table 4.1. These curves are for the case of m = 1. In

Figure 4.2 we also plot the E b/N necessary for reliable communication

when m i1.

For m > 1 the capacity is given by (2.35) with s = p and a given by
in,k

) k= 0

n, k  (4.22)

EP/ 2N k Ep/2N

The minimum in (2.35) no longer has the simple inverse linear relation fFor

the case m - 1.
a&
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In Section 4.5 we compare the system performance based on capacity

calculation to the performance based on error probability for specific

codes.

4.4 Channel Cutoff Rate

In this section we derive expressions for the computational cutoff rate

for channels with partial-band jamming and noncoherent demodulation. Many

of these results have appeared in the literature [ 4], [ 81, [42] for

memoryless channels (m = 1). We repeat these calculations for completeness

and also treat the case of memory m> .

Consider first the case of side information available. From (2.28) the

cutoff rate with side information and memory m is given by

R0om, = . logMJ m (S) (4.23)

where

J(s) =- M -R O 's (4.24)

and R0,s is the cutoff rate of the component channels As

The necessary assumption for the validity of (4.23) and (4.24) that the

input distribution that achieves R0, s is the same for all component channels

will be true for all channels considered.

When the jammer is on the channel it is an M-ary FSK additive Gaussian

noise channel with signal energy-to-noise ratio 2Ep/Nj. The cutoff rate

R0 ,(E:/N j) of this component channel is achieved with a uniform input

distribution on A. When the jammer is off the channel it is a noiseless M5C

with cutoff rate (measured in M-ary units) 1 achieved by a uniform input

distribution. The cutoff rate of the composite channel is then
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RO(M(E/IN) 10 8 1°og 2 ( (J)(E/N)] (4.25)

where

-M) (EINJ) max [pPJ-(Ep/N) + (1 -p) )~ (4.26
O:5p :5 1 " i

-R (x)M'O,M~x
and JM (x) . The maximum in (4,26) can be found by setting the

derivative equal to zero:

M.-i 1,n (4.27)
JH(CM,m) + M,mM (M,m)J=,m (.

where aM,m = Ep/N and J (x) = 3JM(x)/ax. The value of M,m that satisfies

(4.27) determines the worst case p = p*:

I/N <a
* E
p (4.28)

E/Nj M,m

Using (4.28) in (4.25) yields

JM(E/NJ) E <E/N <a M,m

i(m) (E/N ) = (4.29)

Z, +E/N E/N M,m

m -(in)where Z % M - m and thus R() can be found using(4.23)Z4,m = ( M, tce M,m - . f oM,m 0,M c
(4.23) in (4.25). Notice from (4.23) for E/Nj the worst case jamming
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strategy is uniform jamming. Using (4.29) in (4.25) we obtain

ROM(E/KJ) E/N <a Mm

R -S E/ (4.30)

1 - losl. E E/N >M
L "E/N > 1Um

the constants ZM,m and a M,m depend on the type of receiver (e.g. hard

decisions and soft decisions).

For soft decisions Jm (x) can be computed to be [16]

-x te- t2/21 0 (t%/)dt] 2

-. I+(M-l)o TO0 t/2-)0

j ) 0 . (4.31)

For m=l it is easy to check that the maximization in (4.26) is independent

of M. For m=l the cutoff rate with soft decisions and side information is

(measured in M-ary units)

R0,M(E/N ) E/N < 2.871

R (E/N j (4.32)

1 - IogEM 1+ (M-1)(1.424)4 E/N > 2.871
E/N

For hard decisions Jm (x) is given by [16]

1M-2__ _ _ _ _ _ _ _

+ % + (M-)- P (x) + 2 Ps(X)(l-P (X))/(M-1) I
Jm x) N M s1 (4.33)

In1
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where Ps (x) is given in (4.18). In Table 4.2 the constants used to evaluate

the cutoff rate with side information are given for m - 1 and M - 2,4,8,16

and 32.

UTable 4.2. Constants for M-ary hard decision cutoff rate.

M aM,l M.1

2 4.268 1.007

4 4.244 1.502

8 4.245 1.825

16 4.314 2.063

32 4.460 2.291

* For hard decisions without side information and m 1 1 the jammer just

maximizes the symbol error probability. For m > 1 we can use (2.31) to

compute the cutoff rate with aM, k given in (4.22).

We plot in Figure 4.7 the E b/N J needed to achieve R0 for binary FSK

with soft decisions. Both partial-band and uniform jamming are shown. In

* Figure 4.8 the Eb/NJ needed is shown for binary FSK with hard decisions.

Both uniform and partial-band jamming are shown as well as both cases of

side information available. Finally in Figure 4.9 the corresponding results

are shown for 32-ary FSK. We note here that (4.32) is similar to an expression

obtained by Viterbi (43] and Omura and Levitt [31]. However, both of these

papers considered soft decisions with square law combining (a suboptimum

receiver). Here we consider the optimum receiver to obtain (4.32). The form

of the expressions are identical with 1.42' replaced by 1.4715.

e
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4.5 Performance of Codes

3 In this section we examine the performance of codes on channels with

partial-band jamming. We consider the same codes as in Chapter 3.

Consider first hard decisions with 32-ary FSK. The symbol error

probability has the exact same form for noncoherent detection as for coherent

detection when the optimal duty factor p is less than one. In fact when

* - p < l.the decoded bit error probabilities are the same if for noncoherent

we add 1.96 dB to the tables in Chapter 3. However we must check

always that p < 1. In Table 4.3 we give the bit energy-to-average noise

-3 -5density required for 10 and 10 bit error rates with length 31 R-S

codes and in Table 4.4 the corresponding curves for dual-k codes.

From capacity calculation we see that at rate 13/31-.42 we need

Eb/NJf3.2 dB for reliable communication. From cuttoff rate calculations

this is increased to Eb/NJ=9 .OdB. From Table 4.3 we see that for error

-3 ;1'
probability 10 we need Eb/NJ=7.8 dB for 7- codes, 4.6 dB more than what the

channel capacity says and 1.2 less than what the cutoff rate indicates.

We note that the optimal R-S code for 10- 3 error probability has rate 0.42

while for 10-5 the optimal R-S code has rate 0.35. The optimal rate from

capacity considerations is 0.43 and from cutoff rate considerations is

0.191. The optimal rates for dual k codes are much less than R-S codes.

For 10- 3 error probability the rate 1/7=0.14 is optimal while for 10- 5 error

probability the optimal rate is 1/10=0.1 which are much less than predicted

from capacity considerations and slightly less than that predicted from the

cutoff rate.

Consider now the symbol error probability for repetition codes with

and without side information. When side information is not available the
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Table 4.3. Performance of length 31 R-S codes with bounded distance
decoding, no side information and partial-band Jamming
(32-ary FSK).

P 10-  P 10-
": e,b Pe,b

Code Eb/Nj (dB) p b ENj (0)

No Coding 22.45 0.004 42.45 0.00004

(31,29) 16.31 0.018 26.53 0.0017

(31,27) 12.99 0.039 20.33 0.008

(31,25) 11.39 . 0.065 16.54 0.018

(31,23) 10.12 0.095 14.64 0.034

* (31,21) 9.21 0.128 13.09 0.053

(31,19) 8.58 0.164 11.98 0.075

(31,17) 8.14 0.202 11.19 0.100
(31,15) 7.91 0.242 10.66 0.127
(31,13) 7.80 0.286 10.34 0.160

(31,11) 7.89 0.331 10.23 0.193

(31,9) 8.19 0.377 10.37 0.229

(31,7) 8.78 0.424 10.79 0.267

(31,5) 9.75 0.475 11.64 0.308

(31,3) 11.50 0.528 13.30 0.350

(31,1) 15.86 0.581 17.52 0.397

NU

-0i iI - - II
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Table 4.4. Performance of dual-5 codes with Viterbi decoding on channel with
hard decisions, no side information available and partial-band
jamming (32-ary FSK).

""dingE IN (dB) * FN (dB)"Coding o/J "0

No Coding 23.37 0.004 45.37 0.00004

v = 2 14.91 0.177 22.18 0.004

3 10.89 0.325 15.18 0.064

4 9.44 0.463 12.75 0.154

5 8.93 0.584 11.40 0.262

6 8.71 0.584 10.74 0.365

7 8.67 0.688 10.70 0.461

8 8.71 0.778 10.23 0.549

9 8.80 0.857 10.16 0.628

10 8.93 0.925 10.14 0.699

11 9.07 0.986 10.17 0.764

12 9.21 1.000 10.24 0.822

13 9.34 1.000 10.32 0..875

14 9.47 1.000 10.41 0.923

15 9.56 1.000 10.51 0.966

Ii
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uncoded symbol error probability is calculated using (4.20). With

coding the symbol error probability is calculated using (3.55). This

is plotted in Figure 4.10 for n-1.3,5,7. When side information is

available then the symbol error probability has the form of (3.58) with

different constants and P given in (4.18). This is plotted in Figure

4.11. With soft decisions and side information available the error

probability for square-law combining has been calculated [40]. This is

shown in Figure 4.12. Although square-law combining is not optimal, for

low signal-to-noise ratios it is nearly optimal. With partial-band jamming

the signal-to-noise ratio when jaimmed is typically very small so we

expect that square-law combining is nearly optimal. In comparing

Figures 4.12 and 3.15 we see that with noncoherent reception the optimal

code rate depends on the Eb/Nj whereas for coherent reception the optimal

rate is the smallest rate.
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SUMMARY AND CONCLUSIONS

In this thesis we have examined the performance of codes on channels

with partial-band interference and frequency-hopping. The capacity,

cutoff rate and channel capacity were all considered as performance

measures. In Chapter 2 it is shown that the capacity is a better para-

U! meter to characterize the performance of a channel than the cutoff rate.

Comparisons between burst-error correcting codes and random-error correcting

codes with interleaving showed that the later performed comparably to the

former only in the case of side information available. Without side

information burst-error correcting codes perform better.

We examined extensively two types of demodulation for channels with

partial-band jamming, namely coherent and noncoherent. We made the

assumption that there was no background noise in the channel. The

assumption is easily relaxed. The forms of nearly all expressions are

modified slightly when there is some background noise. For example, the

maximum symbol error probability for M-ary orthogonal signaling given in

(3.29) with background noise and worst case partial-band jamming becomes

SPs(E/(NJ+N0 )) E/Nj < KM(E/NO)

E/
P s(E/N O ) 

+  E/Nj E/Nj > M(E/No

w-here X and a depend only on E/N0 , the signal-to-background noise

ratio. As E/N0 - , ,,(E/N O) - XM given in (3.29). Similar results can

be derived for the capacity and cutoff rate. These results can also be

- extended to include fading and jamming together. In many cases with fading6'
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it turns out that the optimum partial-band jamming strategy is uniform

or broad band jamming. For Rician fading this is true only for certain

* ranges of the parameter characterizing the fraction of transmitted energy

-that is faded. In the other range the worst case jamming strategy has

.-the same-form as in the nonfaded channel. What we try to indicate is that

the channel models we are employing are quite general and applicable to a

wide variety of communication systems.

For channels with partial-band interference we evaluated the perfor-

mance of several codes. We considered both block and convolutional codes,

hard and soft decisions and channels with and without side information.

We conclude that good coding schemes exist for channels with partial-band

interference and are essential for reliable communications.

U
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APPENDIX A: DERIVATION OF CAPACITY, RANDOM CODING EXPONENT,

AND CUTOFF RATE FOR CHANNELS WITH MEMORY

* . In this appendix we derive (2.22), (2.24), and (2.29)-(2.32). Let'&

be an M-ary symmetric channel with crossover probability s/(M-1) so that

the symbol error probability is s. Let P be a distribution on the random

variable S. Here we normalize the information rates by measuring in

M-ary symbols per channel use so that the capacity is less than 1.

First consider the capacity CM(m) without side information available.

From (2.16) this is given by

CM(m) = max 1 I(M) (A.1)m

where X = (XlX 2 1...,Xm), _Y = Y2,.Ym ) and the maximum is over all

distributions on the vector X. The maximum in (A.1) is obtained by the

uniform distribution for all channels A so that (A.1) can be written as

CM(m) = I p(Px2p(-)lo (. 10) (A.2)

Mm yx"MP ())

-M Z p(1x2)lo1  (A.3)
- m 15xM-m

That p(y) = M-m is due to the fact that the channel is symmetric and that

p(x) = Mm. From (A.3) we have

0

-m
-(m) Z -m P(-lx:(lo "m + log. p(xl_))

vx

=i+M-m P (vlx) lOMp (I. (A.4)

0X



I |~ ~ *. * V *. - , . . - , . - - . -
J
. . :

119

The sum over X in (A.4) can be decomposed into two sums as

K
3

x k-0 x:d(x,y)-k

The second sum is over all vectors x which are distance k from y. The

distance measure here is the Hamming distance (i.e. dCx,y) is equal to the

number of components in which x and y differ). If x and y differ in k

places then k channel errors have occurred so that

_am~k -pZI.x) = E[(S/(M-l))k(l-S)m- k ] ; ( k . (A.5)

Notice that (A.5) depends only on k and not on the specific x and y. For y

fixed, the number of vectors x such that d(x,y) f k is just (,)(Ml)k so

that (A.4) becomes

M ( ) (M-l)kam,klogMem,k (A.6)
k=O

which for M - 2 is (2.22).

When side information is available the capacity C (m) is given by
M

C M(m) -ECCM(S)) (A.7)

where CM(x) is the capacity of an M-ary syrmetric channel with symbol error

probability x and is given by

CM(X) 1 + (l-x)logI(l-x) + x log\(x/(M-1)) (A.8)

For M-2 (A.7) and (A.8) yield (2.24).



120

Next consider the random coding exponent defined in (2.26) for these

* .channels. For no side information available the random coding exponent is

E 0

Eo ( o ,  Q*) .- gm r- F. M-mp 1t+1

1 +

1 E M1M(I+p ) - 14P

H'[ k-o x:d x,y)-k

1rlo8i M: kl k )  p" log o = (M- 1) atm,k

mI 1 l+P

"P - 11 ,(-)ka1;
om kmk

(1I'0) lo~~ E (-)ka1 (A. 9)
m 9Mk0k k

which for M=2 is (2.29).

For the case of side information available ,m0(p,Q*) can be calculated

as follows

* (M) n(Q*) log E1 Ei -M p(z 1S)1
o m lo S I p( sjx 1 )

1 / -m(14P) rm  (+
losl M k= _ d (R)_ YP)m I s I

1.- lo IZ M-(-C M kk k
II y~~Is k=O xd =

= S k + /

S ,s 0 Mlo {l) k ) (MlS))k } k ((10)

(A.10)
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which for M-2 is (2.30).

The cutoff rate can be easily evaluated by setting p 1.0 in (A.9) and

(A.10). When side information is not available (A.9) with p - 1.0 becomes

2 k
Ro,0 (m) 1 log E . , (A.11)

m k-0Q M1)(I )

which for M-2 is (2.31). When side information is available (A.10) with

p 1.0 becomes

1o /
k+A

1 l=ogw E E ( ) (m) (M.1)k rs (l-S)2m-k'
k-O A-0 "

=1 - 1 lo ' E X:1()(MlJ +J = k+) 1 (A.12)m gm (k=0 1-0 k A T+

which for M2 is (2.32).
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APPENDIX B

WORST CASE DISTRIBUTION FOR PARTIAL-BAND JAMMING

In this appendix we show that allowing the jammer to have an arbitrary

number of power levels instead of just on or off does not change the optimal

jamming strategy. Viterbi and Jacobs showed based on an upper bound to

the error probability that for binary FSK two level is optimum with

diversity. Here we prove that two levels is optimum for binary FSK based

on the exact bit error probability and that two levels is optimal based on

channel capacity when side information is available.

Let Z be a nonnegatLve random variable with expectation N and distribution

Fz(z). If Z - z represents the jammer having noise level z then the average

error probability p is

- -4 /2Z
p M EPhe }(B.l)

where 8 is the received energy of the transmitted signal. Define the

function f(z) by

% -4/2 z Z > 0

* f(z) {
0 Z =0

This is shown in Figure B.l.

We will show that f has a sLngle point of inflection

f'(z) = I e'/2z (E/2z2)

f"(z) - e-5/2z(/z 3)l- - 11

-4z
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Since a e " I2z (Ar) is always nonnegative the only point of inflection3z
occurs at z = E/4. Furthermore for z < E/4, f(z) is a convex function

while for z > E/4 f(z) is a concave function. Define the function f by

e e 1'z/E 0 5 z -- E/2

f(z) -

f(z) .z > E/2

This function is shown in Figure A.l. From the above it can be shown that

f(z) _f(z) z t 0

with equality if z > E/2. We can write (A.l) as

p - ECf(Z)] _ E[f (Z)] (B.2)

with equality if z > E/2 or if Z is conccentrated at the two endpoints

i.e. z - 0 and z = E/2. Now since f is a concave function we have

p E(f(Z)):- %f(E(Z) =(N) (B.3)

Equality can be achieved in (B.3) if z is concentrated on two points or

less. Notice that

-6/2N

f(N) = ~~6N<
e /N < 2f(t)

e d N /

61Nj
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Thus we have shown that two levels is a worst-case distribution for binary

FSK with error probability on the performance measure. The capacity

without side information is a decreasing function of the error probability

so that two levels is optimm without side information also.

With side information the capacity C is the average of the capacities

of various power levels:

- ECC(8/Z)]

Now instead of maximizing the error probability we minimize the capacity.

All the arguments for error probability are true when f is replaced by

C(8/z) provided C(d/z) - g(z) changes convexity just once. This is much

harder to show for g than for f and will not be done here.

S
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APPENDIX C: ERROR PROBABILITY FOR REPETITION CODES

ON M-ARY SYMMETRIC CHANNELS

In this appendix we derive the error probability for repetition

codes on an M-ary symmetric channel (iSC). Let p be the probability

of a symbol error on an MSC and let q-l-p. Also let X represent the

input to the channel (X E {0,1,...,M-I}) and Y the output. Then the

gprobability that Y=y given that X-x is given by
q, x=y

P{Y=yX=xp/Ml xy

Assume the information symbol to be transmitted is X=0. The

repetition code sends this symbol n times. The decoder counts the number

of times each symbol was received and chooses the one that had the

largest count, as the transmitted symbol. Let Yi 0 < i < M-l be the

number of times that i was received. For n=l the symbol error probability

P e,s (1) is just p; for n=2 the error probability P e,s(2) can be computed

by considering the probability of correct decision P :c,s

I
P ~(n) =1i- Ps(n) (C.l)
c's ()e,s(n

This can be computed as

p(n). f 2+ I(=

P02+ P{Yo=1, YI =1 some j#0 }

The first term is the probability that both symbols transmitted were

2received correctly and is equal to (l-p). The second term is the

probability that a tie occurred which is decided randomly between X=O

and X-j. This is given by ;I 2(l-p)p so that

II
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Pc,2 " (1-p)2 + p(l-p) - l-P (C.2)

For u-3 we have the probability of correctly decoding P (3) given by

Pc~ P{Yo > 21 + 4-{Yo.1, Yi-l, Y -1, i#O, J0O," i~i} )

3 2 1 M1-2
q +3pq +1 3qp PMM--- )

q + 3pq 2 + t-) p q (C.3)

For n-4 we have

4 3 2 .M-2 1 2_P_

P cs(4) q + 4q 3p + 6q P(- p) + 6q2p-I

1 M-2 m-3

+- 1 2 2 (M-2) (M-3) 3

q + 4q3p + [6(M-I+ 3(---)q P + (M-1)2  qp
m (M-1)

(C.4)

For n-5

5 4 3p2 M- M-3 2 3
(5) -q +Sq p + l~q p + 1O(-- + 15 ]q pC'"- 2

+ (M-2) (M-3) (M-4) 4
M 1)3 'Pc. 5)

For n-6

. ' t I -li I I .. .I -4
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( 6 p p (M-2) (M-2) (M-3) 10 3 3sP (6) + 6q p + 15q4 2 + [60 +20 (+ qpC' M 1 (M-1) 2 ( -1)

15 (M-2)(M-3)(M-4) + 15 M-2 2 4

(M-1)3 (3-1)

+ [ (M-2 )(M-3)(M- 4 )(M-) ] qp5 (C.6)
(M-1) 4

Notice in each case that P cs(n) is expressed as

n-1 n-i i
P (n) E a q p (C.7)i=O

*O For n=7 the coefficients are

i ai

0 1

1 7

2 21

3356 (M-2)(M-3) + (M-2)(M-3)(M-4) + 2 M-2
4(3-( 3 + 3 + 2 4

5 21 ( (M-2) (M-3) (%-4) (M-5) + 5 (M-2) (M-3) (M-4)
•(M-1) 4 (M-l) 4

+ 5 (M-2) (M-3)

(M-i) 4

6 (M-2) (M-3) (M-4) (M-5)
(M-1)5

For n-8 and M4=32 the a. are given below.

1
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Ia

1 1.

2 8.

3 2.

4 56.

5 69.998825149

6 55.717975016

7 21.909972461

8 0.481708426

For any M and n with p = M -1 Pe,c(n) (M-I)/M.

We can calculate an upper bound on P (n) for any n by applying
ec

the union bound technique. This is calculated as follows:

P (n) < (M-l) p(2) (n)
e,s e,s

where p (2) (n) is the error probability between two codewords of a repetition
e,s

code of iength n. This can be shown to be given by

P(2) (n) n ( 7 jn-j) ( p_ k.>-2 ~--

e,s jk q k M-1 M-

j <k
j +k < n

1 [n/2] ()q (n-J) (M__1l 9 M-2
+- M (M & p)-2 (C.8)

2 j M-1l -j=0

A simpler bound can be obtained by using the Bhattacharyya bound on

P (2)(n). This bound is
ees

eis n (C.9)

'()L
- I +s
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where D is given as

D- M-2
p + 2/p(l-p)/M-1

U

S

0

0
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